Xây dựng mô hình mạng nơron tế bào cnn giải phƣơng trình khuếch tán phức tuyến tính ứng dụng trong xử lý ảnh - Phạm Đức Long

4. Kết luận Xử lý ảnh PDE đã được quan tâm nghiên cứu mạnh trong khoảng 10 năm gần đây. Ứng dụng các quá trình khuếch tán (diffusion) tuyến tính và phi tuyến, đẳng hướng và không đẳng hướng đã cho phép thu được hiệu quả cao trong việc giảm nhiễu, tìm biên ảnh. Bằng việc áp dụng các giá trị phức với hệ số dẫn và với thành phần tín hiệu ảnh thay đổi trong các quá trình khuếch tán có thể cải thiện được quá trình làm giảm nhiễu và vẫn gìn giữ được biên và các chi tiết mang thông tin mỏng mảnh của ảnh. Một mô hình CNN hai lớp thực hiện ý tưởng này cung cấp cho chúng ta một công cụ tìm biên và giảm nhiễu trên CNN với tốc độ xử lý thời gian thực và mô hình CNN này hoàn toàn có thể thực hiện được bằng phần cứng trên nền tảng công nghệ CMOS hoặc FPGA

pdf6 trang | Chia sẻ: thucuc2301 | Lượt xem: 533 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Xây dựng mô hình mạng nơron tế bào cnn giải phƣơng trình khuếch tán phức tuyến tính ứng dụng trong xử lý ảnh - Phạm Đức Long, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ 1 XÂY DỰNG MÔ HÌNH MẠNG NƠRON TẾ BÀO CNN GIẢI PHƢƠNG TRÌNH KHUẾCH TÁN PHỨC TUYẾN TÍNH ỨNG DỤNG TRONG XỬ LÝ ẢNH Phạm Đức Long - Cáp Thanh Tùng (Khoa Công nghệ thông tin - ĐH Thái Nguyên, Phạm Thượng Cát (Viện Công nghệ thông tin - Viện KH&CN Việt Nam) 1. Xử lý ảnh dùng PDE Những ý tưởng về ứng dụng PDE trong xử lý ảnh đã được nhắc đến từ khoảng đầu những năm 80 của thế kỷ 20. Trong khoảng 10 năm gần đây việc nghiên cứu về xử lý ảnh PDE được các nhà nghiên cứu quan tâm do có nhiều ưu điểm trong khi thực hiện. Xử lý ảnh dùng PDE cho phép thực hiện các nhiệm vụ chính là làm trơn (smoothing), tìm biên (edge detection), giảm nhiễu denoising) , phân vùng ảnh, phục hồi cấu trúc ảnh (reconstruction) trong nhiều lĩnh vực đặc biệt là trong xử lý ảnh y tế [5],[7], [8], [9], [10], [11], việc thực hiện được tiến hành trên cả phần mềm và phần cứng [6]. Với một PDE biểu diễn quan hệ giữa độ sáng của ảnh I với các biến chẳng hạn vị trí, thời gian là I(x,y,t) thì nghiệm của nó khi giải với điều kiện khởi tạo I(x0,y0,t0) và điều kiện biên cụ thể chính là hình ảnh mới của I ở thời điểm t. Một ví dụ quen thuộc nhất là phương trình truyền nhiệt tuyến tính đẳng hướng, phương trình này có thể được ứng dụng để thực hiện làm giảm nhiễu và tìm biên. Chúng ta khảo sát phương trình truyền nhiệt như sau: ),,( ),,( tyxIc t tyxI trong đó 2 2 2 2 y I x I I (1) với c là hệ số dẫn. Trường hợp khi phương trình mô tả quá trình truyền nhiệt đẳng hướng c là một hằng số. 2. Mạng nơ ron tế bào CNN Trong khi giải các PDE theo phương pháp sai phân, việc chia các điểm của đường cong PDE càng dày thì độ chính xác khi giải càng cao nhưng dẫn tới khối lượng tính toán càng lớn, thời gian giải càng lâu, không đáp ứng thời gian giải nhất là khi số lượng biến số lớn. Mạng nơ ron tế bào CNN (Cellular Neural Network) được L.O. Chua và L.Yang phát minh ra năm 1988 [1, 2] đã cho phép giải các PDE trong khoảng thời gian vài phần triệu giây. Hình 1. cho xem một CNN một lớp đơn 2 chiều kích thước 3x3. Sơ đồ mạch điện của mỗi một cell C(i,j) như trong hình 2. Hình 1. CNN với hệ thống 3x3 láng giềng Hình 2. Mạch điện một cell CNN Trong sơ đồ vxij, vyij, vuij là ký hiệu các điện áp trạng thái, đầu ra và đầu vào của cell. Điện áp trạng thái vxij được giả định với điều kiện khởi tạo có độ lớn nhỏ hơn hoặc bằng 1. Điện áp đầu vào vuij được giả định là hằng số với độ lớn nhỏ hơn hoặc bằng 1. Mỗi một cell C(i,j) chứa một nguồn điện áp độc lập Eij , một nguồn dòng độc lập I, một tụ tuyến tính Cx, hai điện trở tuyến tính Rx và Ry. Ixy(i,j;k,l) và Ixu(i,j;k,l) là các nguồn dòng được điều khiển bằng điện áp Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ 2 tuyến tính có các đặc điểm Ixy(i,j;k,l) = Aij,klvykl và Ixu(i,j;k,l) = Bij,klvukl với mọi C(k,l) Nr(i,j). r là bán kính ảnh hưởng của các cell láng giềng C(k,l) đến C(i,j) với: Nr(i,j) = {C(k,l)|max{|k-i|,|l-j|} r, 1 k M, 1 l N}. (2) Phần tử phi tuyến trong mỗi một cell là một nguồn dòng được điều khiển bằng điện áp piecewise-linear Iyx = (1/Ry)f(vxij). Hệ số ghép cặp (coupling) Aij,kl và Bij,kl được gọi là các hệ số mẫu hồi tiếp và hệ số mẫu điều khiển. Tất cả các cell trong CNN được giả định rằng có các thông số bằng nhau theo các chiều (không gian bất biến và đẳng hướng). Thuật ngữ mẫu vô tính được sử dụng để nhấn mạnh thuộc tính bất biến này. Điều này có nghĩa là tập hợp 2(2r + 1)2 + 1 con số thực Aij,kl và Bij,kl sẽ quyết định đầy đủ hành vi của một mảng CNN hai chiều bất kì. Các mẫu có thể được biểu diễn cô đọng trong dạng bảng hoặc ma trận. Hệ thống các phương trình mô tả động lực học của một cell CNN hai chiều tuyến tính như sau: Phương trình trạng thái Phương trình đầu ra: vyij(t) = )3(1;1)1)(1)(( 2 1 bNjMitvtv xijxij 3. Mô hình CNN 1 lớp khuếch tán ứng dụng xử lý ảnh 3.1. Mô hình CNN khuếch tán tuyến tính: Trước khi đưa ra mô hình CNN do chúng tôi đề xuất, chúng tôi xin giới thiệu mô hình CNN khuếch tán đẳng hướng một lớp thực hiện giải phương trình truyền nhiệt 2D (trong xử lý ảnh chỉ cần tới PDE 2D) với hệ số khuếch tán không đổi theo các hướng [3]. Thực hiện rời rạc và xấp xỉ hóa (1) và (2): 2 2 x I + 2 2 y I jijijijiji IIIII h ,1,11,,1,2 4 1 (4) với h là bước lưới không gian theo 2 hướng x, y ( x = y = h). So sánh với phương trình trạng thái của CNN [1] chúng ta có bộ mẫu (template) cho CNN một lớp đơn giải phương trình (1) như sau: 0,0, 0 1 0 1141 0 1 0 2 222 2 zB h hRhh h A (5) Mô hình CNN này có thể thực hiện trên phần cứng. 3.2. Mô hình CNN khuếch tán phức tuyến tính Guy Gilboa [4] đã đưa giá trị phức vào quá trình khuếch tán. Một phương trình khuếch tán phức tuyến tính có thể được mô tả: IcRIxIRxtcII xxt ,,)0,(,0, 0 C (6) với I là tín hiệu và c = rej . Quá trình khuếch tán tuyến tính phức này được điều khiển bằng hệ số khuếch tán phức c. Hãy xét phương trình khuếch tán sau: Ic t I (7) Với các giá trị c và I phức: IR jccc và ),(),(),( yxjIyxII IRyx )3(1;1),;,()(),;,()( 1)( ),(),(),(),( aNjMiIvlkjiBtvlkjiAtv Rdt tdv C jiNrlkC ukl jiNrlkC yklxij x xij x Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ 3 ;12j là toán tử Laplace 2 2 2 2 yx . Với c=rej chúng ta có: c= rcos + jsin ; cR = rcos ; cI = rsin (8) Thay vào (7) được: IRIR IIRRIR IrIrjIIr IjIjrIjrIrjIIjr t I cossinsincos sincossincossincos 2 (9) Mặt khác: t I j t I t I IR (10). Từ (9) và (10) cuối cùng chúng ta có: .sincossincos 2 2 2 2 2 2 2 2 y I x I r y I x I rIrIr t I IIRR IR R (11) .cossincossin 2 2 2 2 2 2 2 2 y I x I r y I x I rIrIr t I IIRR IR I (12) Sự phân rã này sẽ có ích cho chúng ta khi xây dựng mô hình giải phương trình (7). Ý nghĩa trong xử lý ảnh: Nếu một quá trình xử lý ảnh có quy luật biến đổi là một PDE mà chúng ta phân tách được PDE đó thành hai thành phần thực và ảo như trên thì khi xử lý bằng khuếch tán phức sẽ thu được đồng thời hai kết quả của quá trình. Điều kiện biên được sử dụng: IR(t=0) = IR0 = I0 : ảnh ban đầu. II (t=0) = II0 =0. Hình 3. CNN 2 lớp 2D giải phương trình khuếch tán phức II và IR sẽ có giá trị trong quá trình lan truyền (khuếch tán) theo (11) và (12). Thành phần thực được xấp xỉ thành một hàm Gaus - mục 3.4 [4]. Thành phần ảo được xấp xỉ thành đạo hàm bậc hai của nó tỉ lệ với thời gian. Thành phần thực sẽ thực hiện quá trình giảm nhiễu và thành phần ảo sẽ thực hiện việc tìm biên. Kết quả xử lý ảnh gốc sẽ cho ra hai ảnh: một ảnh đã được giảm nhiễu, một ảnh cho thấy các biên (edge) và vẫn giữ được các chi tiết mỏng mảnh. Dựa vào các kết quả khai triển trong các phương trình (9), (10), (11) chúng tôi đưa ra một mô hình CNN hai lớp để giải phương trình (7) với c và I là số phức như trong hình 3. Lớp 1 của CNN hai lớp này thực hiện giải PDE với thành phần thực và lớp 2 thực hiện giải phần ảo. Liên kết giữa hai lớp thông qua các bộ mẫu quan hệ A21 và A12. Cụ thể các hệ số mẫu của CNN hai lớp này như sau: Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ 4 A12 = rcos 010 141 010 ; A21 = - rsin 010 141 010 , (15) 4. Thực nghiệm - Khuếch tán tuyến tính: Quá trình thực hiện trên ảnh màu kích thước 256x216 Hình 4. Khuếch tán tuyến tính thực trên ảnh màu - Khuếch tán tuyến tính phức (a) (b) Hình 5. Kết quả kép của khuếch tán tuyến tính phức trên ảnh màu. 6(a): Phần thực hiện quá trình làm giảm nhiễu; 6(b): phần áo thực hiện quá trình tìm biên. (a) Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ 5 (b) Hình 6. Khuếch tán tuyến tính phức trên ảnh nhị phân kích thước 300x300. 7(b): Phần ảo thực hiện quá trình tìm biên Nhận xét Quá trình khuếch tán thực hiện xử lý ảnh có thể tiến hành với cả ảnh nhị phân, ảnh màu và đa cấp xám. Quá trình khuếch tán tuyến tính thực chỉ cho ra được 1 kết quả - tương đương thực hiện trên CNN một lớp đơn trong khi quá trình khuếch tán phức tuyến tính cho kết quả kép cho phép quan sát bằng mắt thường (hoặc xử lý tự động nếu sử dụng hệ thống tính toán-xử lý) với cả hai kết quả đồng thời. Khi được thực hiện trên CNN hai lớp sẽ cho phép quan sát quá trình xử lý liên tục, thời gian thực. Thực nghiệm cho thấy kết quả đúng đắn của mô hình được đề xuất. Trên cơ sở này, mô hình có thể được cứng hóa bằng công nghệ CMOS hoặc FPGA. 4. Kết luận Xử lý ảnh PDE đã được quan tâm nghiên cứu mạnh trong khoảng 10 năm gần đây. Ứng dụng các quá trình khuếch tán (diffusion) tuyến tính và phi tuyến, đẳng hướng và không đẳng hướng đã cho phép thu được hiệu quả cao trong việc giảm nhiễu, tìm biên ảnh. Bằng việc áp dụng các giá trị phức với hệ số dẫn và với thành phần tín hiệu ảnh thay đổi trong các quá trình khuếch tán có thể cải thiện được quá trình làm giảm nhiễu và vẫn gìn giữ được biên và các chi tiết mang thông tin mỏng mảnh của ảnh. Một mô hình CNN hai lớp thực hiện ý tưởng này cung cấp cho chúng ta một công cụ tìm biên và giảm nhiễu trên CNN với tốc độ xử lý thời gian thực và mô hình CNN này hoàn toàn có thể thực hiện được bằng phần cứng trên nền tảng công nghệ CMOS hoặc FPGA Tóm tắt Xử lý ảnh bằng PDE đã được nghiên cứu phát triển mạnh trong thời gian gần đây với nhiều tác vụ thực hiện trên các máy tính hệ lệnh tuần tự. Bài viết của chúng tôi đã giới thiệu một mô hình CNN tự trị 2 lớp thực hiện quá trình giải PDE khuếch tán phức tuyến tính ứng dụng trong xử lý ảnh. Các kết quả mô phỏng và thực nghiệm cho thấy tính đúng đắn của mô hình được đề xuất. Summary Image processing by PDE is investigated recently for tasks in PC. In this paper we are presented a CNN two-layer autonomous model that is used for solving linear complex diffusion PDEs in image processing. The results of simulations are guaranteed that the perform of this model is correct. Tài liệu tham khảo [1]. Leon O. Chua and L. Yang (1988), "Cellular neural networks: Theory", IEEE Trans. Circuits Syst., vol.35, No 10, pp 1257-1272. Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ 6 [2]. Leon O. Chua and L. Yang (1988), "Cellular neural networks: Applications", IEEE Trans. Circuits Syst., vol.35, No 10, pp 1273-1290. [3]. T.Roska, L.O. Chua, D.Wolf, T.Kozek, R.Tetzlaff, and F. Puffer (1995), "Simulating Nonlinear Waves and Partial Differential Equations via CNN-Part I: Basic Techniques", IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, Vol.42, No 10, pp 807-815. [4]. G. Gilboa, N. Sochen, and Y. Y. Zeevi (2004),”Image Enhancement and Denoising by Complex Diffusion Processes”, IEEE Transactions on Pattern Analysis and Machine Inlelligence, Vol. 26, No. 8, pp1020-1036. [5]. D. Marr; E. Hildreth (1980), "Theory of Edge Detection", Proceedings of the Royal Society of London. Series B, Biological Sciences, Vol. 207, No. 1167, pp. 187-217. [6]. X. Benedettit P. Perona (1998), "Real-time 2-D Feature Detection on a Reconfigurable Computer", IEEE, pp 586-593. [7]. P. Petrona and J. Malik (1990), "Scale-Space and Edge Detection Using Anisotropic Diffusion", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12. No. 7, pp 629-639. [8]. L. Alvarez, P. L. Lions, and J. M. Morel (1992), “Image selective smoothing and edge detection by nonlinear diffusion,” SLAM J. Numer. Anal. 29, pp. 845-866. [9]. L. Alvarez, F. Guichard, P. L. Lions, and ,J. M. Morel, “Axioms and fundamental equations of image processing,” Arch. Rational Mechanics 123. [10]. D. A. Karras, G. B. Mertzio (2004),” Discretization Schemes and Numerical Approximations of PDE Impainting Models and a comparative evaluation on novel real world MRI reconstruction applications”, . IEEE IST 2004 International Workshop on Imaging Systems and Techniques Strcsa, Italy, pp 153-158. [11]. Jose-Jesús, Fernández, Sam Li (2005), "Anisotropic Nonlinear Filtering of Cellular Structures in Cryoelectron Tomography", Computing in Science & Enginering, Copublished by the IEEE CS and the AIP, pp 54-61, IEEE.

Các file đính kèm theo tài liệu này:

  • pdfbrief_992_9473_8_9902_2053093.pdf