Example. For vectors p(x) and q(x) in P2, set
a. Show that (p,q) is an inner product.
1 0
( , ) ( ) ( ) p q p x q x dx
b. Compute (p,q) where p x x x q x x ( ) 2 3 1; ( ) 3 2
c. Compute the length of the vector p x x ( ) 2 3
d. Compute the distance between p(x) and q(x) where
2 2
p x x x q x x x ( ) 2; ( ) 2 3
e. Compute the angle between two vector in d)
23 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 914 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Toán học - Chapter 5: The orthogonality and least squares, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Math Dept, Faculty of Applied Science,
HCM University of Technology
-------------------------------------------------------------------------------------
Math 415: Linear Algebra
Chapter 5: The Orthogonality and Least Squares
• Instructor Dr. Dang Van Vinh (6/2006)
CONTENTS
---------------------------------------------------------------------------------------------------------------------------
3.1 – The Scalar Product in Rn
3.2 – Orthogonal Subspaces
3.4 – The Gram - Schmidt Orthogonalization Process
3.3 – Orthonormal set
3.5 – Inner Product Spaces
3.6 – Least Square Problem
3.1 The Scalar Product in Rn
---------------------------------------------------------------------------------------------------------------------------
Definition of Inner Product in Rn
Let u and v are vectors in Rn.
1
2
n
u
u
u
u
1
2
n
v
v
v
v
The inner product of u and v is
1
2
1 2 1 1 2 2n n n
n
v
v
u v u u u u v u v u v
v
3.1 The Scalar Product in Rn
------------------------------------------------------------------------------------------------------------
--
Example. Let . Compute (u,v) and (v,u)
2 3
5 ; 2
1 3
u v
Solution.
3
( , ) 2 5 1 2
3
Tu v u v
2 3 ( 5) 2 ( 1)( 3) 1
2
( , ) 3 2 3 5 1
1
Tv u v u
3.1 The Scalar Product in Rn
------------------------------------------------------------------------------------------------------------
--
d. (u,u) (v,u), and (u,u) = 0 if and only if u = 0.
Theorem
Let u, v and w be vectors in Rn, and let c be a scalar. Then
a. (u,v) = (v,u)
b. (u+v,w) = (u,w) + (v,w)
c. (cu,v) = c(u,v)=(u,cv)
The Length of a Vector
The length (or norm) of vector u is the nonnegative scalar
||u|| defined by
2 2 2
1 2|| || ( , ) nu u u u u u
3.1 The Scalar Product in Rn
-----------------------------------------------------------------------------------------------------------
A vector whose length is 1 is called a unit vector.
If we divide a nonzero vector u by its length, we obtain a
unit vector.
The process of creating a unit vector is called normalizing
The Distance between two vectors
For u and v in Rn, the distance between u and v, written as
dist(u,v), is the length of the vector u – v. That is
dist(u,v) = ||u – v||
Example. 1) Let v = (1,-2,2,0). Find a unit vector u in the
same direction as v.
2) Compute the distance between the vectors
u = (7,1) and v = (3,2).
3.2 Orthogonal Subspaces
------------------------------------------------------------------------------------------------------------
--
Definition of Orthogonality
Two vectors u and v in Rn are orthogonal (to each other) if
(u,v) = 0
The Pythagorean Theorem
Two vectors u and v in Rn are orthogonal if and only if
2 2 2|| || || || || ||u v u v
Orthogonal Complements
If a vector z is orthogonal to every vector in a subspace W
of Rn, then z is said to be orthogonal to W.
The set of all vectors z that are orthogonal to W is called
the orthogonal complement of W and is denoted by W
3.2 Orthogonal Subspaces
------------------------------------------------------------------------------------------------------------
--
Theorem
1. A vector x is in if and only if x is orthogonal to
every vector in a set that span W.
W
2. is a subspace of Rn. W
Proof.
Theorem
Let A be an mxn matrix. Then the orthogonal complement
of the row space of A is the nullspace of A, and the
orthogonal complement of the column space of A is the
nullspace of AT.
(Row A)T = Null A; (Col A)T = Null AT.
Proof.
3.2 Orthogonal Subspaces
------------------------------------------------------------------------------------------------------------
--
Example. Let be a subspace
of R3. Find the basis and dimension of
(1,1,1),(2,1,0),(1,0, 1)F
F
Solution. 1 2 3( , , )x x x x F x F
1 2 3
1 2
1 3
(1,1,1) 0
(2,1,0) 2 0
(1,0, 1) 0
x x x x
x x x
x x x
1
2
3
2 ( , 2 , ) (1, 2,1)
x
x x
x
{(1, 2,1)}F span Dim =1; basis: {(1,-2,1)} F
3.2 Orthogonal Subspaces
------------------------------------------------------------------------------------------------------------
--
Example. Let
F
1 2 3 3 1 2 3 1 2 3( , , ) | 0 & 2 0F x x x R x x x x x x
be a subspace of R3. Find the basis and dimension of
Solution. Step 1. Find the spanning set of F.
1 2 3
1 2 3
1 2 3
0
( , , )
2 0
x x x
x x x x F
x x x
1
2
3
2
3 (2 , 3 , ) (2, 3,1)
x
x x
x
The spanning set of F is {(2,-3,1)}
Step 2. Analogous the previous example.
3.3 Orthonormal Set
------------------------------------------------------------------------------------------------------------
Definition of an Orthogonal Set
A set of vectors {u1, u2, ..., up} is said to be an orthogonal
set if each pair of distinct vectors from the set is
orthogonal.
Theorem
If S= {u1, u2, ..., up} is an orthogonal set of nonzero
vectors in Rn, then S is linearly independent and hence is a
basic for the subspace spanned by S.
Proof.
Example. Show that {u1, u2, u3} is an orthogonal set, where
1 1 3(3,1,1); ( 1,2,1); (1,4, 7)u u u
3.3 Orthonormal Set
------------------------------------------------------------------------------------------------------------
--
Theorem
Let E = {u1, u2, ..., up} be an orthogonal basis for a
subspace W of Rn. Then each y in W has a unique
representation as a linear combination of E. In fact, if
y = c1u1 + c2u2 + ... + cpup
then
Proof.
( , )
( , )
j
j
j j
y u
c
u u
1 1 3(3,1,1); ( 1,2,1); (1,4, 7)u u u
Example. The set E = {u1, u2, u3} is an orthogonal basis for
R3, where
Express the vector y = (6,1,-8) as a linear combination of
the vectors in E.
3.3 Orthonormal Set
------------------------------------------------------------------------------------------------------------
--
Solution. Compute
1 2 3( , ) 11;( , ) 12;( , ) 33y u y u y u
1 1 2 2 3 3
33
( , ) 11;( , ) 6;( , )
2
u u u u u u
31 2
1 2 3
1 1 2 2 3 3
( , )( , ) ( , )
( , ) ( , ) ( , )
y uy u y u
y u u u
u u u u u u
1 2 3 1 2 3
11 12 33
2 2
11 6 33/ 2
y u u u u u u
Remark. How easy it is to compute the weights needed to
build y from an orthogonal basis.
If the basis were not orthogonal, it would be
necessary to solve a system of linear equations to find the
weights.
3.3 Orthonormal Set
------------------------------------------------------------------------------------------------------------
--
Definition of an Orthonormal Set
A set E = {u1, u2, ..., up} is an orthonormal set if it is an
orthogonal set of unit vectors.
If W is a subspace spanned by such of set, then E is an
orthonormal basis for W, since the set is automatically
linearly independent.
Theorem
An mxn matrix U has orthonormal columns if and only if
UTU=I.
Proof.
Example. Show that {v1, v2, v3} is an orthonormal set, where
1 2
3
(3 / 11,1 / 11,1 / 11); ( 1 / 6 , 2 / 6 ,1 / 6 );
(1 / 66 , 4 / 66 , 7 / 66 )
u u
u
3.3 Orthonormal Set
------------------------------------------------------------------------------------------------------
Theorem
Let U be an mxn matrix with orthonormal columns, and let
x and y be in Rn. Then
|| || || ||Ux xa.
( , ) ( , )Ux Uy x yb.
( , ) 0 ( , ) 0Ux Uy x y c.
Proof.
Definition of an Orthogonal Matrix
An orthogonal matrix is a square invertible matrix U such
that U-1 = UT.
Theorem
A square matrix with orthonormal columns is an orthogonal
matrix
3.4 The Gram-Schmidt Orthogonalization Process
--------------------------------------------------------------------------------------------------------------
The Gram – Schmidt process is a simple algorithm for
producing an orthogonal or orthonormal basis for any
subspace of Rn.
Example. Let W = Span{x1, x2}, where x1 = (3,6,0) and
x2 = (1,2,2). Construct an orthogonal basis {v1, v2} for W.
Solution. Let p be the projection of x2 onto x1. The
component of x2 orthogonal to x1 is x2 – p, which is in W
because it is formed from x2 and a multiple of x1. Let v1= x1
and 2 1
2 2 2 1
1 1
( , )
( , )
x x
v x p x x
x x
15
(1,2,2) (3,6,0) (0,0,2)
45
Then {v1, v2} is an orthogonal set of nonzero vectors in W.
3.4 The Gram-Schmidt Orthogonalization Process
--------------------------------------------------------------------------------------------------------------
Example.
Let W = Span{x1=(1,1,1,1), x2=(0,1,1,1), x3 = (0,0,1,1)}
Construct an orthogonal basis {v1, v2, v3} for W.
Solution. Step1. Let v1 = x1 and W1 = Span{x1} = Span{v1}
To simplify later computations, choose v2 = (-3,1,1,1)
Step2.
1
2 1
2 2 2 2 1
1 1
( , )
( , )W
x v
v x proj x x v
v v
3 3 1 1 1(0,1,1,1) (1,1,1,1) ( , , , )
4 4 4 44
Step3.
2
3 1 3 2
3 1 2
1 1 2 2
( , ) ( , )
( , ) ( , )
W
x v x v
proj x v v
v v v v
2
3 1 3 1
3 3 3 3 1 1
1 1 1 1
( , ) ( , )
( , ) ( , )W
x v x v
v x proj x x v v
v v v v
3 2
2 1 1(0, , , ) (0, 2,1,1)
3 3 3
v v
3.4 The Gram-Schmidt Orthogonalization Process
--------------------------------------------------------------------------------------------------------------
The Gram – Schmidt Process
Given a basis {x1, x2, ..., xp} for a subspace W of R
n, define
1 1v x
2 1
2 2 1
1 1
( , )
( , )
x v
v x v
v v
3 1 3 2
3 3 1 2
1 1 2 2
( , ) ( , )
( , ) ( , )
x v x v
v x v v
v v v v
1 2 1
1 2 1
1 1 2 2 1 1
( , ) ( , ) ( , )
( , ) ( , ) ( , )
p p p p
p p p
p p
x v x v x v
v x v v v
v v v v v v
Then {v1, v2, ..., vp} is an orthogonal basis for W. In addition
1 2 1 2{ , , , } { , , , };1k kSpan v v v Span x x x k p
3.5 Inner Product Spaces
---------------------------------------------------------------------------------------------------------------------------
Definition of Inner Product
An inner product on a vector space V is a function that,
to each pair of vectors u and v in V, associates a real
number (u,v) and satisfies the following axioms, for all
u, v, w and all scalars c
a. ( , ) ( , )u v v u
b. ( , ) ( , ) ( , )u v w u w v w
c. ( , ) ( , )cu v c u v
d. ( , ) 0;( , ) 0 0u u u u u
A vector space with an inner product space is called an
inner product space.
3.5 Inner Product Spaces
---------------------------------------------------------------------------------------------------------------------------
Example. For vectors x = (x1, x2) and y = (y1, y2) in R
2, set
1 1 2 2( , ) 3 4x y x y x y
Show that (x,y) is an inner product.
Example. For vectors x = (x1, x2) and y = (y1, y2) in R
2, set
1 1 1 2 2 1 2 2( , ) 3 4x y x y x y x y x y
Show that (x,y) is an inner product.
Example. For vectors x = (x1, x2, x3); y = (y1, y2, y3) in R
3,
set
1 1 1 2 2 1 2 2 3 3( , ) 4x y x y x y x y x y x y
Show that (x,y) is an inner product.
3.5 Inner Product Spaces
---------------------------------------------------------------------------------------------------------------------------
Example. For vectors p(x) and q(x) in P2, set
a. Show that (p,q) is an inner product.
1
0
( , ) ( ) ( )p q p x q x dx
b. Compute (p,q) where 2( ) 2 3 1; ( ) 3p x x x q x x
c. Compute the length of the vector ( ) 2 3p x x
d. Compute the distance between p(x) and q(x) where
2 2( ) 2; ( ) 2 3p x x x q x x x
e. Compute the angle between two vector in d)
3.5 Inner Product Spaces
---------------------------------------------------------------------------------------------------------------------------
2{ ( ) | (1) 0; ( 1) 0}F p x P p p Given a subspace
Example. For vectors p(x) and q(x) in P2, set
1
1
( , ) ( ) ( )p q p x q x dx
a. Find the spanning set of subspace F.
c. Find the basis and dimension of F
2( ) 2p x x x m b. Determine m such that
is be long to F
d. Produce an orthogonal basis for P2 by applying the
Gram-Schmidt process to the polynomials 1, x, x2.
3.6 Least Square Problem
---------------------------------------------------------------------------------------------------------------------------
Các file đính kèm theo tài liệu này:
- dang_van_vinhchapter5_orthogonality_4977.pdf