Let be a linear mapping, and the matrix
representation of f with respect to basis
Find the matrix representation of f
with respect to the standard basis.
Standard basis: F { } (1,0,0),(0,1,0),(0,0,1)
P: the change of matrix from E to F.
B P AP 1 is the matrix representation of f with respect to F
Instead of calculating P, we find P-1
P 1 is the change of basis matrix from standard basis to E
45 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 893 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Toán học - Chapter 5: Linear transformation, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Math Dept, Faculty of Applied Science,
HCM University of Technology
-------------------------------------------------------------------------------------
Subject: Linear Algebra
Chapter 5: Linear transformation
• Instructor Dr. Dang Van Vinh (12/2006)
CONTENTS
---------------------------------------------------------------------------------------------------------------------------
I – Definition and examples
III – The Matrix of a linear transformation
IV –Transition Matrix and change of basis
V –Similarity
II – The Kernel and Image of linear transformation
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Given two sets X and Y, if we assign to each element x of X
one and only one element y of Y, then the rule of assignment
is called a function (or a mapping or a transformation).
Definition of mapping (Transformation)
:f X Y
( )x f x y
The set X is called the domain of the function f.
The set Y is called the co-domain of the function f.
For an element x of the domain, the assigned element f(x) is
called the image of x.
The set of all images, which is a subset of the co-domain Y,
is called the range of the function.
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
A mapping is said to be onto Y if each y in Y is
the image of at least one x in X.
:f X Y
A mapping is said to be one-to-one (or 1:1) if
each y in Y is the image of at most one x in X.
:f X Y
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Definition of Linear transformation
1. f(v1 + v2) = f(v1) + f(v2)
The operator f from V into W is said to be linear
transformation if for any elements v1 and v2 of the space V
and any scalar , the following relations are satisfied:
Let V and W be a linear spaces whose dimensions are n and
m respectively.
2. f( v) = f(v)
If the space W coincides with the space V, then the linear
operator acting in this case from V into V is also called a
linear transformation of the space V.
Remark
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Let be a linear transformation. WVf :
Let E ={e1, e2, , en} be a basis (or spanning set) of V.
Assume that f(e1), f(e2), , f(en) are given.
1 1 2 2 n nx V x x e x e x e
1 1 2 2( ) ( )n nf x f x e x e x e
1 1 2 2( ) ( ) ( ) ( )n nf x f x e f x e f x e
1 1 2 2( ) ( ) ( ) ( )n nf x x f e x f e x f e
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
23: RRf
)2,32()();,,( 31321321 xxxxxxfxxxx
Show that the map given by
Example
is a linear transformation.
Let V be a vector space. Show that the map
given by is a linear transformation. 0)(: xfVx
Example
RVf :
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear transformation. 3 3:f R R
Assume that (1,1,1) (1,2,1);f
(1,1,2) (2,1,0);f
(1,2,1) (1,0,3);f
1. Find f (5,3,6)
2. Find f (x)
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Which of the following map is a linear transformation?
Example
1. ),32(),(;: 1212122 xxxxxfRRf
2. )0,2(),(;: 212122 xxxxfRRf
3. )1,2(),(;: 1212122 xxxxxfRRf
4. ),1(),(;: 212122 xxxxfRRf
5. ),(),(;:
2
1212122 xxxxxfRRf
6 ),(),(;: 122122 xxxxfRRf
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear mapping. Set 3 2:f R R
(1,1,1) (1,2),f (1,1,0) (2, 1),f (1,0,1) ( 1,1);f
1. Find f (3,1,5) 2. Calculate f (x)
1. Assume (3,1,5) (1,1,0) (1,1,1) (1,0,1)
3
1
5
2, 3, 2
(3,1,5) ( (1,1,0) (1,1,1) (1,0,1))f f
(3,1,5) (1,1,0) (1,1,1) (1,0,1)f f f f
(3,1,5) 2(2, 1) 3(1,2) 2( 1,1)f ( 3,10)
The mapping f is defined if we know
the images of one basis for R3.
Example
A linear mapping f is a rotation around the z-axis through
the angle 30o counterclockwise. Find f(x).
Linear mapping 3 3:f R R
o
y
z
x
(0,0,1) (0,0,1)f
3 1
(1,0,0) ( , ,0)
2 2
f
1 3
(0,1,0) ( , ,0)
2 2
f
1 2 1 2 3
3 1 1 3
( ) ( , , )
2 2 2 2
f x x x x x x
The mapping f is completely define if we know an images of
one basis for R3.
Example
A linear transformation f is a symmetric with respect to the
plane . Find f(x).
A linear mapping 3 3:f R R
(2, 1,3) ( 2,1, 3)f
(1,2,0) (1,2,0)f (0,3,1) (0,3,1)f
( )f x
2 3 0x y z
A basis {(1,0,0), (0,1,0), (0,0,1)}is not good for calculating.
Choose a basis {(1,2,0), (0,3,1), (2,-1,3)}.
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
V W
0Kerf
Let be a linear transformation. The kernel of a
linear transformation f is the set of all the element x of the
space V for which f(x) = 0.
Definition of the Kernel
WVf :
0)(| xfVxKerf
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
V W
Imf
Let be a linear transformation. The image of a
linear transformation f is the set of all the element y of the
space W which can be represented as y = f(x).
Definition of the Image
WVf :
)(:|Im xfyVxWyf
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
Theorem
Let be a linear transformation. WVf :
1. The kernel of a linear transformation f is a subspace of V.
2. The image of a linear transformation f is a subspace of W.
3. dim(kerf) +dim(Imf) = dim (V)
Proof.
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
3. dim(kerf) +dim(Imf) = dim (V) Proof.
Suppose dim(Kerf) = m. Basis for Kerf 1 2, ,...,{ }mE e e e
Extend E to the basis for V: 1 1 1,..., , ,..., }{ m nE e e v v
Show that is a basis for Imf. 2 1( ),..., ( ){ }nE f v f v
Im : ( )y f x V y f x
1 1 1 1( ... ... )m m n ny f e e v v
1 1 1 1( ) ... ( ) ( ) ... ( )m m n ny f e f e f v f v
1 1( ) ... ( ).n ny f v f v E2 is a spanning set for Imf.
1)
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
2) Show that E2 is a linear independent set.
1 1( ... ) 0n nf v v 1 1 ... .ern nv v K f
1 1 1 1... ...n n m mv v e e
1 1 1 1... ... 0n n m mv v e e
E1 is a independent: 1 2 ... 0m
E2 is a linear independent.
1 1( ) ... ( ) 0n nf v f v Assume
Thus E2 is a basis for Imf.
dim(Imf ) = n. dim(Imf ) + dim(Kerf ) = m + n = dim(V).
is a basis ( or spanning set) for Imf.
Theorem
If is a basis (spanning set) for V, then
Proof. Let be a spanning set for V. 1 2, ,...,{ }nE e e e
Imy f : ( )x V y f x x is a linear combination of E.
1 1 2 2( ... )n ny f x e x e x e The mapping f is linear mapping
1 1 2 2( ) ( ) ... ( )n ny x f e x f e x f e
1 2( ), ( ),..., ( ){ }nF f e f e f e spans y.
1 2Im ( ), ( ),..., ( )nf f e f e f e
1 2, ,...,{ }nE e e e
1 2( ), ( ),..., ({ )}nf e f e f e
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
Steps for finding an Image of a linear transformation
1. Select a basis for V: 1 2, ,...,{ }nE e e e
3. 1 2Im ( ), ( ),..., ( )nf f e f e f e
2. Find 1 2( ), ( ),..., ( )nf e f e f e
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear transformation. Given 3 3:f R R
3
1 2 3
1 2 3 1 2 3 1 2 3 1 2 3
( , , ) :
( ) ( , , ) ( ,2 3 ,3 5 )
x x x x R
f x f x x x x x x x x x x x x
1. Find a basis and dimension for Kerf.
1 2 3( , , ) Kerx x x x f ( ) 0f x
1 2 3 1 2 3 1 2 3( ,2 3 ,3 5 ) (0,0,0)x x x x x x x x x
1 2 3
1 2 3
1 2 3
0
2 3 0
3 5 0
x x x
x x x
x x x
1 2 32 ; ;x x x
(2 , , )x
(2, 1,1)x
E={(2,-1,1)} is a spanning set and basis for Kerf
dim(Kerf) = 1.
Example
3
1 2 3
1 2 3 1 2 3 1 2 3 1 2 3
( , , ) :
( ) ( , , ) ( ,2 3 ,3 5 )
x x x x R
f x f x x x x x x x x x x x x
2. Find a basis and dimension of Imf.
Select a basis for R3: (1,0,0), (0,1,0), (0,0,1){ }E
Im (1,0,0), (0,1,0), (0,0,1)f f f f
Im (1,2,3), (1,3,5),( 1, 1, 1)f
dim(Imf) = rank {(1,2,3), (1,3,5), (-1,-1,-1)}
dim(Im ) 2f Basis: E={(1,1,1), (0,1,2)}
Let be a linear transformation. Given 3 3:f R R
Example Let be a linear transformation. Set 3 3:f R R
1. Find a basis and dimension for Kerf.
First solusion.
(1,1,1) (1,2,1);f (1,1,2) (2,1, 1);f (1,2,1) (5,4, 1);f
1 2 3 3( , , )x x x x R
1 2 3( , , ) (1,1,1) (1,1,2) (1,2,1)x x x x
1
2
3
2
2
x
x
x
1 2 3
3 1
2 1
3x x x
x x
x x
1 2 3 1 2 3 1 2 3( ) ( 4 4 , 2 ,5 2 2 )f x x x x x x x x x x
er1 2 3( , , )x x x x K f ( ) 0f x AX = 0.
(2 , ,4 )x (2,1,4)x
Basis for Kerf E={(2,1,4)}, dim(Kerf) = 1.
(1,1,1),(1,1,2),(1,2,1){ }E Second solution. Select a basis
Kerx f ( ) 0f x 1
2
3
[ ]E
x
x x
x
1 2 3(1,1,1) (1,1,2) (1,2,1)x x x x
1 2 3( ) (1,1,1) (1,1,2) (1,2,1)f x x f x f x f
1 2 3 1 2 3 1 2 3( ) ( 2 5 ,2 4 , ) f x x x x x x x x x x
AX = 0. ( ) 0f x 1 2 3, 2 ,x x x
2[ ]
Ex
(1,1,1) 2 (1,1,2) (1,2,1)x
( 2 , , 4 ) (2,1,4)x
Basis of Kerf: E={(2,1,4)}, dim(Kerf) = 1.
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear transformation. 3 2:f R R
Assume that (1,1,1) (1,1);f
(1,1,0) (3,1);f
(1,0,1) (0,1);f
1. Find a basis and dimension of Kerf.
2. Find a basis and dimension of Imf.
Example
Let be a linear transformation. Set 3 3:f R R
2. Find a basis and dimension for Imf.
(1,1,1) (1,2,1);f (1,1,2) (2,1, 1);f (1,2,1) (5,4, 1);f
Select a basis for R3: (1,1,1), (1,1,2), (1,2,1){ }E
Im (1,1,1), (1,1,2), (1,2,1)f f f f
Im (1,2,1),(2,1, 1), (5,4, 1)f
dim(Imf) = Rank {(1,2,1),(2,1,-1),(5,4,-1)}
dim(Im ) 2f Basis: E={(1,2,1), (0,1,1)}
Example
A linear mapping f is a rotation around z-axis an angle 300
counterclockwise.
Find a basis and dimension of the kernel and the image of f.
o
y
z
x
There is only one zero vector has an
image is zero vector.
dim(kerf) + dim(Imf) = dim (R3).
Thus dim(Imf) = 3
Imf = R3.
The Kerf contains only one zero vector.
dim(Kerf) = 0.
Example
Find a linear mapping , such that 4 3:f R R
1 2Im (1,1,1), (1,2,1)f f f
1 2er (1,1,1,0), (2,1,0,1)K f e e
1(1,1,1,0)e
2 (2,1,0,1)e
3(0,0,1,1)e
4 (0,0,0,1)e
(0,0,0)
1(1,1,1)f
2(1,2,1)f
1 2( ) ( ) 0f e f e 3 4( ) (1,1,1), ( ) (1,2,1)f e f e
( )f x
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear transformation. 3 3:f R R
Assume that (1,1,1) (1,2,1);f
(1,1,2) (2,1,0);f
(1,2,1) (0,1, 1);f
1. Find a basis and dimension of Kerf.
2. Find a basis and dimension of Imf.
II. Kernel and image
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear transformation. 3 3:f R R
Assume that
1. Find a basis and dimension of Kerf.
2. Find a basis and dimension of Imf.
3
1 2 3
1 2 3 1 2 3 1 2 3 1 2 3
( , , ) :
( ) ( , , ) ( ,2 3 ,3 5 )
x x x x R
f x f x x x x x x x x x x x x
III. The Matrix of a linear transformation
---------------------------------------------------------------------------------------------------------------------------
Definition.
Then
Let E = {e1, e2, , en} be a basis for V.
F = {f1, f2, , fm} be a basis for W.
, 1 2[ ( )] [ ( )] [ ( )]E F F F n FA f e f e f e
Let be a linear mapping. WVf :
is the matrix representation of f with respect to E and F.
Let be a linear mapping. Assume that 23: RRf
1 2 3 1 2 3 1 3( , , ); ( ) ( 2 3 ,2 ) x x x x f x x x x x x
Example
Find a matrix of f with respect to E and F.
{ }; { }(1,1,1),(1,0,1),(1,1,0) (1,1),(1,2)E F
(1,1,1) (0,3)f [ ](1,
3
1,1)
3
Ff
(1,0,1) ( 2,3)f [ ](1,
7
0,1)
5
Ff
(1,1,0) (3,2)f [ ](1,
4
1,0)
1
Ff
7
5
3
3
4
1
A
III. The Matrix of a linear transformation
---------------------------------------------------------------------------------------------------------------------------
1. For any linear mapping there exists one and
only one matrix AE,F such that
:f V W
,[ ( )] [ ]F E F Ef x A x
where E and F are two bases for V and W respectively.
Theorem
2. Let be a matrix over K. There exists one and
only one linear mapping such that
( )ij m nA a
: n mf K K
,[ ( )] [ ]F E F Ef x A x
Example
E = {(1,1,1); (1,0,1); (1,1,0)} and F = {(1,1); (2,1)}
Let be a linear mapping and 3 2:f R R
be a matrix representation of f
with respect to two bases
,
2 1 3
0 3 4E F
A
Step1. Find coordinates of (3,1,5) :
Step 2. Use a formula ,[ ( )] [ ]F E F Ef x A x
Step 3. Find coordinates of f(3,1,5) with respect to natural basis.
3
(3,1,5) 2
2
[ ]E
3
2 1 3 14
[ (3,1,5)] 2
0 3 4 2
2
Ff
(3,1,5) 14(1,1) 2(2,1) (10,12)f
1. Find f (3,1,5)
Example
Let be a linear mapping and
1. Calculate f (2,3,-1) 2. Find Kerf.
,
1 1 1
2 3 3
1 2 4
E EA
3 3:f R R
ker ( ) 0x f f x
Suppose
1
2
3
[ ]E
x
x x
x
[ ( )] 0Ef x , .[ ] 0E E EA x
be a matrix representation of f
with respect to the basis
E = {(1,1,1); (1,0,1); (1,1,0)}.
1 1 2 2 3 3x x e x e x e
1
2
3
1 1 1
2 3 3 0
1 2 4
x
x
x
6
[ ] 5Ex
6 (1,1,1) 5 (1,0,1) (1,1,0)x
(2 ,7 , )x (2,7,1)
is a basis for Kerf. (2,7,1){ }E
dim( er ) =1K f
1 2 3( , , ) x x x x (1,1,1) (1,0,1) (1,1,0)
1 2 3 1 2 1 3; ;x x x x x x x
[ ]
1 2 3
1 2
1 3
E
x x x
x x x
x x
Example
E = {(1,1,1); (1,0,1); (1,1,0)} and F = {(1,1); (2,1)}
Let be a linear mapping and 3 2:f R R
be a matrix representation of f
with respect to two bases
,
2 1 3
0 3 4E F
A
2. Find f (x)
[ ]
1 2 3
1 2
1 3
2 1 3
( )
0 3 4
F
x x x
f x x x
x x
Using the formula: [ ] [ ],( ) .F E F Ef x A x
[ ] 1 2 3
1 2 3
4 5
( )
7 3 4F
x x x
f x
x x x
1 2 3 1 2 3( ) ( 4 5 )(1,1) (7 3 4 )(2,1)f x x x x x x x
1 2 3 1 2 3( ) (10 5 3 ,3 2 )f x x x x x x x
III. Similarity
---------------------------------------------------------------------------------------------------------------------------
E F
E’ F’
A
P Q
Q-1AP
Schema:
Notice: Q is the change of matrix from F to F’, then Q is
invertible.
III. Matrix of a linear transformation
---------------------------------------------------------------------------------------------------------------------------
Example
Let be a linear transformation. 3 3:f R R
Assume that
1. Find f(2,1,5).
2. Find a matrix representation of f with respect to the basis
E = {(1,1,1); (1,1,2); (1,2,1)}.
1 2 3 1 2 3 1 2 3 1 2 3( ) ( , , ) ( ,2 ,3 4 )f x f x x x x x x x x x x x x
3. Find f(2,1,5) using item 2), compare the result with item 1).
Let be a linear mapping and
III. The Matrix of a linear transformation
---------------------------------------------------------------------------------------------------------------------------
3 3:f R R
Example
1. Calculate f (4,3, 5)
,
1 0 1
2 1 4
1 1 3
E EA
2. Find a basis and dimension of Imf.
be a matrix representation of f with respect to the basis
E = {(1,1,1); (1,1,0); (1,0,0)}
III. Similarity
---------------------------------------------------------------------------------------------------------------------------
{ }; { }' ' ' '1 2 1 2, ,..., , ,...,n nE e e e E e e e Two bases of V:
Given a linear transform W:f V
{ }; { }' ' ' '1 2 1 2, ,..., , ,...,m mF f f f F f f f Two bases of W:
Let P be the change of basis matrix from E to E’ (the change –of-
coordinates matrix)
A be the matrix representation of f with respect to E and F.
Then is a matrix representation of f with respect to
E’ and F’.
1
EFQ A P
[ ( )] [ ]F EF Ef x A x ' '[ ( )] [ ]EFF EQ f x A P x
' '
1[ ( )] [ ]EFF Ef x Q A P x
Let Q be the change of basis matrix from F to F’.
III. Similarity
---------------------------------------------------------------------------------------------------------------------------
Let A and B be two nxn matrices over K.
Definition
A is similar to B if there is an invertible matrix P such thant
P-1 A P = B.
Theorem
A is a matrix representation of f with respect to E, E.
Let be a linear mapping. : Vf V
B is a matrix representation of f with respect to F, F.
Then A and B are similar.
Let be a linear mapping, and the matrix
representation of f with respect to
: f V V
Example
,
2 1 3
1 2 0
1 1 1
E EA
Find the matrix representation of f
with respect to the basis
P is the change of basis matrix from E to F
The matrix repesentation of f with respect to F is 1B P AP
1 2 2
0 1 0
0 1 1
P
{ , ,2 }1 2 3 1 2 3 1 2 32E e e e e e e e e e
{ , , }1 2 3 1 2 2 3F e e e e e e e
III. Similarity
---------------------------------------------------------------------------------------------------------------------------
{ }; { }' ' ' '1 2 1 2, ,..., , ,...,n nE e e e E e e e Given two bases of V:
Given a linear mapping V:f V
P is the change of basis matrix from E to E’.
A is the matrix representation of f with respect to E.
Then is the matrix representation of f with respect
to E’.
1P AP
' '
1[ ( )] [ ]
E E
f x P AP x
E E
E’ E’
A
P P
P-1AP
Let be a linear mapping, and the matrix
representation of f with respect to basis
E = {(1,2,1); (1,1,2); (1,1,1)} is
3 3:f R R
Example
,
1 0 1
2 1 4
1 1 3
E EA
Find the matrix representation of f
with respect to the standard basis.
Standard basis: { }(1,0,0),(0,1,0),(0,0,1)F
P: the change of matrix from E to F.
is the matrix representation of f with respect to F 1B P AP
Instead of calculating P, we find P-1
is the change of basis matrix from standard basis to E 1P
1
1 1 1
2 1 1
1 2 1
P
Các file đính kèm theo tài liệu này:
- dang_van_vinhchapter4_lineartransformation_2405.pdf