Toán học - Chapter 4: Vector space (cont)
Let F and G be two subspaces of R3, where Example F (1,0,1);(1,1,1) 1. Find the dimension and basic of 2. Find the dimension and basic of F G .
Bạn đang xem trước 20 trang tài liệu Toán học - Chapter 4: Vector space (cont), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Math Dept, Faculty of Applied Science,
HCM University of Technology
-------------------------------------------------------------------------------------
Linear Algebra
Chapter 4: VECTOR SPACE (cont.)
• Instructor Dr. Dang Van Vinh (12/2006)
CONTENTS
---------------------------------------------------------------------------------------------------------------------------
I – Coordinates of a vector
II – Subspaces
III – The intersection and sum of subspaces
I. Coordinates of a vector
-------------------------------------------------------------------------------------------------
Let E ={e1, e2, , en} be an ordered basic for a vector
space V and let x be an element of a vector space V.
Definition of coordinates of a vector
1 1 2 2 ... n nx x e x e x e
The coefficients x1, x2, , xn in the expansion
are called the coordinates of x with respect to E, and from
now on, [x]E will denote the column vector
1
2[ ]E
n
x
x
x
x
I. Coordinates of a vector
-------------------------------------------------------------------------------------------------
2 2 2
2Let { 1; 2 1; 2} be a basic of [ ].E x x x x x x P x
Example
Find the vector p(x), whose coordinates with
respect to E are
3
[ ( )] 5
2
Ep x
I. Coordinates of a vector
-------------------------------------------------------------------------------------------------
3Let {(1,1,1);(1,0,1);(1,1,0)} be a basic of .E R
Example
Let x = (3,1,-2) be an element of R3.
Find the coordinates of V with respect to the
basic E.
I. Coordinates of a vector
-------------------------------------------------------------------------------------------------
2
2Let { 1; 1;2 1} be a basic of [ ].E x x x x P x
Example
Find the coordinates of vector f(x) = 3x2+4x-1 with respect
to E.
I. Coordinates of a vector
-------------------------------------------------------------------------------------------------
1 1
2 22. [ ]E
n n
x y
x y
x y
x y
1 1
2 21.
n n
x y
x y
x y
x y
1
2[ ]E
n
y
y
y
y
Properties of coordinates of a vectors
1
2[ ]E
n
x
x
x
x
1
23. [ ]E
n
x
x
x
x
I. Coordinates of a vector
-------------------------------------------------------------------------------------------------
2 2 2
2Let { 1;3 2 1;2 } be a subset of [ ].M x x x x x x P x
Example
Determine whether M is a linearly dependent or linearly
independent subset.
Subset F
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
V- vector space
Subset F 2 operations in V Vector Space F
pace F
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
A nonempty subset F of a vector space V is a subspace of
V if and only if the following statements are true.
1. , : f g F f g F
2. , for any scalar : f F f F
Theorem 1
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
1 2 3 3 1 2 3( , , ) | 2 0F x x x R x x x
Example
1. Show that F is a subspace of R3
2. Find a dimension and basic of F.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
3( ) | (1) 0 & (0) 0F p x R p p
Example
1. Show that F is a subspace of R3.
2. Find a dimension and basic of F.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Example
2
1 1
[ ] | 0
2 2
F A M R A
1. Show that F is a subspace of M2[R]
2. Find a dimension and basic of F.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Span{M}=Span 1 2 1 1 2 2{ , ,..., } { }n n n iv v v v v v R
1 2{ , , , }nM v v v V
1. Span{M} is a subspace
2. The dim(Span{M}) is equal to the rank of M.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Let (1,1,1);(2,1,1);(3,1,1)F
Find the basic and dimension of F.
Example
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Let 2 2 21,2 3 1, 2 2F x x x x x x
Find the basic and dimension of F.
Example
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Example
2
where ,
2
a b a b
F a b R
b a
Find a dimension and basic of F.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Example
1 1 2 1 3 1 1 0
, , ,
2 1 0 1 2 1 2 0
F
Find a dimension and basic of F.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Let (1, 2,3); {(1,1,1);(2,1,0);(3, 1,3)}x M
Is x in the subspace spanned by M?
Example
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Let (1,0, ); {(1,1,1);(2,3,1);(3,2,0)}x m M
For what value(s) of m will x be in the subspace
spanned by M?
Example
3. The product of one solution by a scalar will be a solution.
2. The sum of two solutions will be a solution.
1. The set E0 is not an empty set.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Let AX = 0 be a homogeneous system.
Let E0 be a set of all solutions of the system.
E0 is a subspace of R
n and is called Nullspace
of A.
II. Subspaces
---------------------------------------------------------------------------------------------------------------------------
Subspace
Span of some set
Solutions of AX = 0
Nul A = { | 0}nx R Ax i j m nA a
The null space Null A of an mxn matrix A is a subspace of
Rn.
III. Intersection and Sum of subspaces
---------------------------------------------------------------------------------------------------------------------------
Dim(E0) = number of unknowns – r(A).
Theorem
Let AX = 0 be a homogeneous system.
Example
Find the basic and dimension of nullspace of following matrix
1 1 2 1 1
2 3 4 3 1
3 2 5 4 3
1 1 1 1 2
A
III. Intersection and Sum of subspaces
---------------------------------------------------------------------------------------------------------------------------
Let F and G be two subspaces of vector space V.
The intersection of two subspaces F and G is a subset of V,
denoted by
Definition of Intersection of two subspaces
{ | and }F G x V x F x G
The Sum of two subspaces F and G is a subset of V, denoted
by
Definition of Sum of two subspaces
{ | where and }F G f g f F g G
III. Intersection and Sum of subspaces
---------------------------------------------------------------------------------------------------------------------------
2.
Theorem
1. are two subspaces of V. andF G F G
dim( ) dim( ) dim( ) dim( )F G F G F G
Remark
F G F F G V
F G G F G V
III. Intersection and Sum of subspaces
---------------------------------------------------------------------------------------------------------------------------
Steps to finding subspace F+G
1. Find the spanning set of F. Suppose this set is {f1, f2, , fn}
1 2 1 23. , ,..., , , ,...,n nF G f f f g g g
2. Find the spanning set of G. Suppose this set is {g1, g2, , gn}
II. Intersection and Sum of two subspaces
---------------------------------------------------------------------------------------------------------------------------
Let F and G be two subspaces of R3, where
Example
1 2 3 1 2 3( , , ) | 2 0}F x x x x x x
1 2 3 1 2 3( , , ) | 0}G x x x x x x
1. Find the dimension and basic of .F G
2. Find the dimension and basic of .F G
II. Intersection and Sum of two subspaces
---------------------------------------------------------------------------------------------------------------------------
Let F and G be two subspaces of R3, where
Example
1 2 3 1 2 3( , , ) | 0}F x x x x x x
(1,01,);(2,3,1)G
1. Find the dimension and basic of .F G
2. Find the dimension and basic of .F G
II. Intersection and Sum of two subspaces
---------------------------------------------------------------------------------------------------------------------------
Let F and G be two subspaces of R4, where
Example
1 2 3 41 2 3 4
1 2 3 4
0
( , , , )
2 2 0
x x x x
F x x x x
x x x x
1. Find the dimension and basic of .F G
2. Find the dimension and basic of .F G
1 2 3 41 2 3 4
1 2 3 4
0
( , , , )
3 2 2 3 0
x x x x
G x x x x
x x x x
II. Intersection and Sum of two subspaces
---------------------------------------------------------------------------------------------------------------------------
.F G
Let F and G be two subspaces of R3, where
Example
(1,0,1);(1,1,1) F
1. Find the dimension and basic of
2. Find the dimension and basic of .F G
(1,1,0);(2,1,1) G
II. Intersection and Sum of two subspaces
---------------------------------------------------------------------------------------------------------------------------
.F G
Let F and G be two subspaces of P2[x], where
Example
2{ ( ) [ ] | (1) 0}F p x P x p
1. Find the dimension and basic of
2. Find the dimension and basic of .F G
2{ ( ) [ ] | ( 1) 0}G p x P x p
Các file đính kèm theo tài liệu này:
- dang_van_vinhchap4_vectorspace_cont_4881.pdf