Let S v v v { , ,., } 1 2 p be a set in V and let H = Span { , ,., } v v v 1 2 p
a. If S is a linearly dependent, then the set formed from S by
removing one vector still spans H.
b. If S is a linearly Independent, then any proper subset of S
doesn’t spans H.
42 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 882 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Toán học - Chapter 4: Vector space, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Math Dept, Faculty of Applied Science,
HCM University of Technology
-------------------------------------------------------------------------------------
Linear Algebra
Chapter 4: VECTOR SPACE
• Instructor Dr. Dang Van Vinh (12/2006)
CONTENTS
---------------------------------------------------------------------------------------------------------------------------
I – Definition and examples
V – Subspaces
II – Linear independence
IV – Basic and Dimension
III – Rank of vectors
VECTOR SPACE V
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
2. (u + v) + w = u + (v + w)
3. There is a zero vector 0 in V such that u + 0 = u
4. For each u in V, there is a vector –u in V such that u + (-u) = 0
1. u + v = v + u;
5. For all scalars a and b and any vector x: (ab)x = a(bx).
6. c(u + v) = cu + cv
7. (c + d)u = cu + du 8. 1u = u
A nonempty set V Two operations
Multiplication by scalar Addition
Eight axioms
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
For each u in V and scalar c:
3) 0u = 0
4) c0 = 0
5) -u = (-1)u
Properties of Vector Space
1)There is a single zero element in an arbitrary vector space
2) There is a single additive inverse vector for every vector u
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
RxxxxV i ),,( 3211
),,(),,(),,( 332211321321 yxyxyxyyyxxxyx
),,(),,( 321321 xxxxxxx
33
22
11
yx
yx
yx
yx
Example 1
V1 - VECTOR SPACE 3R
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
RcbacbxaxV ,,22
Example 2
)()()(
)()()()(
2121
2
21
22
2
211
2
1
ccxbbxaa
cxbxacxbxaxqxp
cbxaxcbxaxxp 22 )()(
21
21
21
21 )()(
cc
bb
aa
xpxp
V2 - VECTOR SPACE ][2 xP
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Rdcba
dc
ba
V ,,,3
Example 3
V3 - VECTOR SPACE ][2 RM
2121
2121
22
22
11
11
21
ddcc
bbaa
dc
ba
dc
ba
AA
dc
ba
dc
ba
A
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
4 1 2 3 1 2 3( , , ) 2 0iV x x x x R x x x
The addition and multiplication vector by scalar are the
same as in Example 1.
V4 - VECTOR SPACE
Example 4
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
12),,( 3213214 xxxRxxxxV i
The addition and multiplication vector by scalar are the
same as in Example 1.
V4 - NOT VECTOR SPACE
44 )2,3,2(,)1,2,1( VyVx
4)3,5,3( Vyx
Example 4
Note: We can define another two operations addition and
multiplication in V1, ( or V2, or V3 ) so that V1 ( or V2, or V3 )
is a vector space.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
V- vector space over K
1 2{ , ,..., }mM x x x
Subset
M – linear dependent
1 2, , , m K not all zero
1 1 2 2 0m mx x x
M – linear independent
1 1 2 2 0m mx x x
1 2 0m
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
V- vector space over K
1 2{ , ,..., }mM x x x
Subset
1 2, , , m K
1 1 2 2 m mx x x x
Vector x in V is called a linear combination of M, if
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
{ (1,1,1 ) ; ( 2 ,1, 3 ) , (1, 2 , 0 ) }M
Example 5
1. Decide whether M is linearly dependent or independent?
2. Is a vector x = (2,-1,3) a linear combination of M?
Solution 1.
2 2 3 0 0 0( , , ) ( , , )
2 0
2 0
3 0
1 2 1
1 1 2
1 3 0
A
2r( A )
The system has many solutions, then M is a linearly dependent.
Suppose 1 1 1 2 1 3 1 2 0 0( , , ) ( , , ) ( , , )
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
2. Suppose 1 1 1 2 1 3 1 2 0( , , ) ( , , ) ( , , ) x
2 2 3 2 1 3( , , ) ( , , )
2 2
2 1
3 3
1 2 1 2
1 1 2 1
1 3 0 3
(A | b)
r(A | b) r(A)
Thus vector x is not a linear combination of M.
The system is inconsistent.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
1 2{ , , , }mM x x x
1 1 2 2 0m mx x x
Homogeneous
system AX=0
Unique trivial
solution X = 0
M – linear dependent
Non trivial
solution
M – linear independent
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
1 2{ , , , }mM x x x
1 1 2 2 m mx x x x
System
AX= b
Consistent
x is not a linear
combination of M.
Inconsistent
x is a linear combination
of M
Let be a subset of a vector
space V.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
{ , , 2 3 , } M x y x y z
Example
a. Is a vector 2x + 3y a linear combination of {x, y, z}?
b. Is the set M linear dependent or linear independent?
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example
Let M = { x, y, z} be a linear independent set in a vector space V.
Show that the set M1= {x+y+2z, 2x+3y+z, 3x+4y+z}
is a linear independent.
Suppose ( 2 ) (2 3 ) (3 4 ) 0x y z x y z x y z
( 2 3 ) ( 3 4 ) (2 ) 0x y z
Because of M is a linear independent set, we obtain
2 3 0
3 4 0
2 0
0
Thus M1 is a linear independent set.
Let be an independent subset of a vector space V.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
{ , }M x y
Example
a.
b.
1 2 3M { x, y}
2 M {x+y,2x+3y}
c. 3 M {x+y,2x+3y,x-y}
Decide whether each subset is linearly dependent or linearly
independent.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
1 2{ , , , }mM x x x - linear dependent
- linear combination of the remaining
vectors in M
ix
If M contains a zero vector, then M is linear dependent
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
If M is a linear dependent, then the set formed from M by
adding some another vectors still linear dependent.
If M is a linear independent, then the set formed from M by
removing some another vectors still linear independent.
Let M be a set containing m vectors: 1 2{ , ,..., }mM x x x
Let N be a set containing n vectors: 1 2{ , ,..., }nN y y y
If every vector yk from N is a linear combination of M
and n > m, then N is dependent set.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example
Let M = { x, y} is a subset of a vector space V.
Is the set M1 ={2x+y, x+3y, 3x+y} a linear dependent or not?
Suppose (2 ) ( 3 ) (3 ) 0x y x y x y
(2 3 ) ( 3 ) 0x y
It’s incorrect because M is maybe
not linear independent
2 3 0
3 0
Correct solution. It’s easy to show that every vector from M1 is a
linear combination of M
And the number of vectors in M1 is greater than the number of
vectors in M
Hence M1 is a linear dependent.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example
Let {x,y} be a linearly independent subset of a vector space
V and a vector z is not a linear combination of {x ,y}.
Show that the subset is a linearly independent. { , , }x y z
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
{ (1,1,1) ; ( 2 ,1, 3 ) , (1, 2 , 0 ) }M
Example 7
Determine whether the following set of vectors is a linear
dependent or linear independent.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example 8
Determine whether the following set of polynomials is a
linear dependent or linear independent.
2 2{ 1,2 3 2,2 1}M x x x x x
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
1 1 2 1 3 4 1 3
{ ; ; ; }
1 0 1 1 0 1 1 2
M
Example 9
Determine whether the following set of matrices is a linear
dependent or linear independent.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example 10
Determine all value(s) m, such that the following set is linear
dependent
{(1,1,0);(1,2,1);( ,0,1)}M m
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
1 2{ , , , , }mM x x x V
Definition of a rank of a set of vectors
The rank of M is k0 if there exists k0 independent vectors
from M and any subset of M containing greater than k0
vectors is dependent.
The rank of M is the maximum number of independent
vectors from M.
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
Example 11
Find a rank of following set of vectors
{(1,1,1,0);(1,2,1,1);(2,3,2,1),(1,3,1,2)}M
Let be a linearly independent subset of a
vector space V.
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
{ , }M x y
Example
a.
b.
1 2 3M { x, y}
2 2 3M {x,y, x y}
Calculate a rank of each following subset.
c. 3 2 3 0M {x,y, x y, }
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
1 2 1 1
3 1 0 5
2 4 1 6
A
1 2 3{ (1,2,1, 1); (3,1,0,5); ( 2,4,1,6)}M x x x
The set of row vectors of A.
The set of column vectors of A.
1 2 1 1
3 , 1 , 0 , 5
2 4 1 6
N
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
Theorem of a Rank
Let A be a mxn matrix over K.
A rank of A is equal to a rank of the set of column
vectors of A.
A rank of A is equal to a rank of the set of row vectors of
A.
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
Example 11
Find a rank of following set of vectors
{(1,1,1,0);(1,1, 1,1);(2,3,1,1),(3,4,0,2)}M
Solution
1 1 1 0
1 1 1 1
2 3 1 1
3 4 0 2
A
M is a set of row vectors of A. It follows that rank of M is
equal to a r(A).
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
Let M be a set containing m vectors.
1. If rank of M is equal to m (the number of vectors in M)
then M is independent.
2. If rank of M is less than to m (the number of vectors in
M) then M is dependent.
3. If rank of M is equal to a rank of M adjoint vector x then
x is a linear combination of M.
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
1 2{ , , , , }mM x x x V
Definition of a spanning set
A set M is called a spanning set for vector space V if
any vector from V is a linear combination of M.
M spans V
Vector space V spanned by M
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Example 12
Determine whether a following set is a spanning set for R3.
{(1,1,1);(1,2,1);(2,3,1)}M
1 2 3 3( , , ) . x x x x R
Thus, x is a linear combination of M and M is a spanning set for R3
1 2 3 1 2 31 1 1 1 2 1 2 3 1( , , ) ( , , ) ( , , ) ( , , ) x x x x
1 2 3 1
1 2 3 2
1 2 3 3
2
2 3
x
x
x
Direct calculation shows that
the system is consistent
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Example
Determine whether a following set is a spanning set for R3.
{(1,1, 1);(2,3,1);(3,4,0)}M
1 2 3 3( , , ) . x x x x R
1 2 3 1 2 31 1 1 2 3 1 3 4 0( , , ) ( , , ) ( , , ) ( , , ) x x x x
1 2 3 1
1 2 3 2
1 2 3
2 3
3 4
x
x
x
For , the system is inconsistent 1 2 1( , , )x
The element (1,2,1) is not linear combination of M. Thus M is not a
spanning set for R3.
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Example 13
Determine whether a following set is a spanning set for P2[x].
2 2 2{ 1;2 3 1; 2 }M x x x x x x
2
2( ) [x]. p x ax bx c P
2 2 2
1 2 31 2 3 1 2( ) ( ) ( ) ( ) p x x x x x x x
1 2 3
1 2 3
1 2
2
3 2
a
b
c
For the element the system has no solution. Thus
2
0 2 p x x
the set M is not a spanning set for P2[x].
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
1 2{ , , , , }mM x x x V
M- independent Span M = V
M- Basic of V
M is a basic
M- finite set
V – finite dimentional
Dim V = number of vectors in a
basic of V
If V is not spanned by a finite set, then V is said to be
infinite - dimensional
III. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
dim(V) =n
Any set in V containing less than n vectors doesn’t span V
Any set in V containing more than n vectors must be
linearly dependent
Any independent set in V containing exactly n vectors
must be basic of V
Any spanning set of V containing exactly n vectors must
be basic of V
III. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Let be a set in V and let H = Span 1 2{ , ,..., }pS v v v 1 2{ , ,..., }pv v v
a. If S is a linearly dependent, then the set formed from S by
removing one vector still spans H.
b. If S is a linearly Independent, then any proper subset of S
doesn’t spans H.
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Example 14
Determine whether a following set is a basic for R3.
{(1,1,1);(2,3,1);(3,1,0)}M
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Example 15
Determine whether a following set is a basic for P2[x].
2 2 2{ 1;2 1; 2 2}M x x x x x x
Các file đính kèm theo tài liệu này:
- dang_van_vinhchap4_vectorspace_7456.pdf