Toán học - Chapter 0: Complex numbers
Exercise 7 Express cos5 and sin 5 in terms of functions of the angle . Express cosn and sin n in terms of functions of the angle
Bạn đang xem trước 20 trang tài liệu Toán học - Chapter 0: Complex numbers, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1
Math Dept, Faculty of Applied Science,
HCM University of Technology
-------------------------------------------------------------------------------------
Linear Algebra
Chapter 0: Complex Numbers
• Instructor Dr. Dang Van Vinh (10/2007)
2
A syllabus of Linear Algebra
1. Complex numbers
2. Matrix operations
3. Determinants
4. System of Linear equations
5. Vector spaces
6. Linear transformations
7. Eigenvalues, eigenvectors
Quadratic form, orthogonality.
3
Student’s Tasks.
Class attendance is expected.
Do any homework and assignments.
Be prepared for the next lesson.
Tests, Final Exam.
Midterm Test (20%)
Assignments and homework (30%)
Final Exam (50%)
4
Literature
1. V.A. Ilyin, Linear algebra; Mir Publishers Moscow, 1986
2. Strang G. Linear algebra and its applications, 1988.
3. David C. Lay, Linear Algebra and its applications, New York, 1993.
4. Meyer C.D. Matrix analysis and applied linear algebra, SIAM, 2000.
5. Kuttler K. Introduction to linear algebra for mathematicians,
6. Usmani R. Applied linear algebra, Marcel Dekker, 1987.
7. Kaufman L. Computational Methods of Linear Algebra ,2005.
8. Steven Leon, Linear Algebra with Applications, 2006
9. Muir T. Theory of determinants, Part I. Determinants in general
10. Golub G.H., van Loan C.F. Matrix computations. 3ed., JHU, 1996.
11. Nicholson W.K. Linear algebra with applications , PWS Boston, 1993.
12. Hefferon J. Linear algebra,
13. Proskuriyakov I.V. Problems in Linear algebra.
14. www.tanbachkhoa.edu.vn
5
CONTENTS
---------------------------------------------------------------------------------------------------------------------------
0.1 – The Standard form (algebraic form)
0.2 – The Trigonometric form
0.4 – The Power of complex numbers
0.5 – The Roots of complex numbers
0.6 – The Fundamental Theorem of Algebra
0.3 – The exponential form
6
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
Definition of a complex number
If a and b are real numbers and i is the imaginary unit,
then a + bi is called a complex number. The real number a
is called the real part and the real number b is called the
imaginary part of the complex number.
The real numbers are a subset of the complex numbers. This can
be observed by letting b = 0. Then a + bi = a + 0i, which a is a
real number.
7
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
Any number that can be written in the form 0 + bi, where
b is a nonzero real number, is an imaginary number ( or
a pure imaginary number). For example: i, -2i, 3i are all
imaginary numbers.
A complex number is in standard form when it is written
in the form a + bi.
8
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
Definition of addition and subtraction of complex numbers
If a + bi and c + di are complex numbers, then
Addition (a + bi) + (c + di) = (a + c) + (b + d) i
Subtraction (a + bi) - (c + di) = (a - c) + (b - d) i
Two complex numbers are said to be equal if they have the same
real and imaginary parts.
In other words, the complex numbers z1 = x1 + iy1 and
z2 = x2 +iy2 are equal if and only if x1 = x2 and y1 = y2.
Definition of Equality
9
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
Definition of Multiplication of complex numbers
If a + bi and c + di are complex numbers, then
(a + bi) (c + di) = (ac – bd) + ( ad + bc)i
Example
Find an algebraic form of the number
z = (2 + 5i).(3+ 2i)
solution
z = (2 + 5i)(3 + 2i)
= 6 + 4i + 15i + 10 i2
Algebraic form of the given number is z = -4 + 19i.
= 2.3 + 2.2i + 3.5i + 5i.2i
= 6 + 19i + 10(-1) = -4 + 19i
10
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
Addition, Subtraction, and Multiplication
To add (subtract ) two complex numbers, simply
add (subtract ) the corresponding real and imaginary parts.
To multiply two complex numbers, use the
distributive law and the fact that i2 = −1.
11
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
Definition of conjugates
The complex numbers a + bi and a - bi are called
complex conjugates or conjugates of each other. The
conjugate of the complex number z is denoted by . z
Example
Find the conjugate of the number z = (2 + 3i) (4 - 2i).
Solution.
So conjugate of z is 14 8 . z i
z = (2 + 3i) (4 - 2i) = 2.4 – 2.2i + 3i.4 – 3i.2i
= 8 – 4i + 12i – 6i2 = 8 – 4i + 12i – 6(-1) = 14 + 8i.
12
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
If z and w are complex numbers, with conjugates and ,
then:
z w
1. is a real number. z z
2. is a real number. z z
3. if and only if z is a real number. z z
4. z w z w
5. z w z w
6. z z
7. for all natural number n ( )n nz z
Conjugate Theorems
13
0.1 The Standard form (algebraic form)
-----------------------------------------------------------------
The trick for dividing two complex numbers is to multiply top
and bottom by the complex conjugate of the denominator:
Definition of the division
1 1 1
2 2 2
z a ib
z a ib
1 1 1 2 2
2 2 2 2 2
( )( )
( )( )
z a ib a ib
z a ib a ib
1 1 2 1 2 1 2 2 1
2 2 2 2
2 2 2 2 2
z a a b b b a a b
i
z a b a b
14
0.1 The Standard form (algebraic form)
---------------------------------------------------------------------------------------------------------------------------
Example.
Find the quotient
i
i
5
23
Solution
)5)(5(
)5)(23(
5
23
ii
ii
i
i
125
210315 2
iii
i
i
2
1
2
1
26
1313
Multiply numerator and
denominator by 5 + i,
which is the conjugate of
the denominator
Write in standard form
15
Remarks: Comparison with Real Analysis
The concept of order in the real number system does not carry
over to the complex number system. In other words, we
cannot compare two complex numbers z1 = a1 + ib1 and
z2 = a2 + ib2. Statements such as z1 < z2 or z2 ≥ z1 have no
meaning in C except in the special case when the two numbers
z1 and z2 are real
0.1 The Standard form (algebraic form)
---------------------------------------------------------------------------------------------------------------------------
16
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
( , ) M a b z a bi
r
b
a o x
y
2 2 mod( ) r a b z
cos
:
sin
a
r
b
r
Real axis
Imaginary axis
17
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
2 2mod( ) | | .z z r a b
Definition of the Module
The module of a complex number z = a + bi is a positive real
number, denoted by
Example
Determine the module of the number z = 3 - 4i.
Solution
mod(z) = |z| =
2 2 2 23 ( 4) 5. a ba = 3; b = -4.
18
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Let z = a + bi. Then
2 2| | z a b
Remark.
The distance between the point (a,b) and the origin.
The distance between two points (a, b) and (c,d).
Let z = a + bi and w = c + di. Then
2 2| | ( ) ( )z w a c b d
2 2( 0) ( 0) a b
19
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Example
Find all complex numbers z such that
| 2 3 | 5 z i
Solution
| 2 3 | 5z i
| (2 3 ) | 5z i
This is a circle with a center at (2,-3) and a radius is 5.
20
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Example
Find all complex numbers z such that
| 2 | 1z i
Solution
z i | 2 | 1
z i | ( 2 ) | 1
This is a circle with the center at (0,-2) and the radius is 1.
21
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Example
Find all the numbers z, such that
| 2 | | 2 |z z
Solution
| 2 | | 2 | z z
The set of all points in the plane such that the distance from
these points to given two points (2,0) and (0,2) are equal.
This is a vertical axis.
22
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Example
Find all complex numbers z, such that
| | | | 4z i z i
Solution
| | | | 4 z i z i
The set of all points, such that the sum of distances from
these points to two given points (0,1) and (0,-1) is a
constant. This is an ellipse.
23
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Definition of the argument
The argument is the angle formed by the
complex number on a polar graph with one real axis and one
imaginary axis.
arg( )z
Remember.
0 2 or
A formula for finding an argument.
2 2
2 2
cos
sin
a a
r a b
b b
r a b
or tg
b
a
24
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Solution
Example
Find an argument of 3 . z i
3; 1 a b . We find an angle such as
3 3
os =
23 1
a
c
r
1 1
sin =
23 1
b
r
It follows that
6
arg(z) =
6
25
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
2 2; 0 z a bi a b
(cos sin ) z r i
The trigonometric form
2 2
2 2 2 2
( )
a b
z a b i
a b a b
(cos sin )z r i
26
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Solution
Module:
Write the number in trigonometric form
Example
1 3 z i
1; 3. a b
1 1
os =
23 1
a
c
r
3 3
sin =
23 1
b
r
Hence
2
3
trigonometric form:
2 2| | 2. r z a b
Argument:
2 2
1 3 2(cos sin )
3 3
z i i
27
0.2 The Trigonometric Form
-----------------------------------------------------------------------------------------------------
1 1 1 1 2 2 2 2(cos sin ); (cos sin )z r i z r i
Equal numbers in trigonometric form
1 2
1 2
1 2 2
r r
z z
k
Product in trigonometric form
1 2 1 2 1 2 1 2(cos( ) sin( ))z z r r i
Quotient two numbers in trigonometric form
1 1
1 2 1 2
2 2
(cos( ) sin( ))
z r
i
z r
28
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Solution
(1 )(1 3) z i i
Trigonometric form:
Example
Find trigonometric, module and argument of the number
(1 )(1 3). z i i
2( os in ) 2( os in )
4 4 3 3
z c is c is
2 2[ os( ) in( )]
4 3 4 3
z c is
2 2( os in ).
12 12
z c is
29
0.2 The Trigonometric Form
---------------------------------------------------------------------------------------------------------------------------
Solution
2 2 3
3
i
z
i
Trigonometric form:
7 7
2( os in ).
6 6
z c is
Example
Find a trigonometric, module and argument of the number
2 12
.
3
i
z
i
- -
4(cos sin )
3 3
5 5
2(cos sin )
6 6
i
i
- 5 - 5
2[cos( - ) sin( - )]
3 6 3 6
z i
30
0.3 Exponential form of complex number
---------------------------------------------------------------------------------------------------------------------------
cos sinie i
Euler’s Theorem
z a bi
(cos sin )z r i
iz re
Algebraic form of z
Trigonometric form of z
Exponential form of z
31
0.3 Exponential form of complex number
---------------------------------------------------------------------------------------------------------------------------
Example
Find an exponential form of the number
3 z i
Trigonometric:
5 5
2(cos sin )
6 6
z i
Exponential:
5
62
i
z e
32
0.3 Exponential form of complex number
---------------------------------------------------------------------------------------------------------------------------
Example
Represent following complex numbers in a complex plane.
2 ; iz e R
A module is unchanged. It follows that these numbers are in a
circle with center at the origin and the radius is e2.
2(cos sin )z e i
33
0.3 Exponential form of complex number
---------------------------------------------------------------------------------------------------------------------------
Example
Represent following numbers in a complex plane.
3 ; a iz e a R
(cos3 sin3)az e i
Argument is unchanged, so these numbers are is in a half-line
in the second - quarter plane.
34
0.3 The Power of complex numbers
-----------------------------------------------------------------------------------------------------
Definition of Natural Power of a complex number
z a bi
2 2 2( )( ) ( ) (2 )z z z a bi a bi a b ab i
3 3 3 2 2 3( ) 3 3 ( ) ( ) ... z a bi a a bi a bi bi
0 1 1 2 2 2( ) ( ) ( ) ... ( )n n n n n n nn n n nz a bi C a C a bi C a bi C bi
nz A iB
35
0.3 The Power of complex numbers
-----------------------------------------------------------------------------------------------------
Example. Let z = 2 + i. Find z5.
55 )2( iz
555
44
5
323
5
232
5
41
5
50
5 22222 iCiCiCiCiCC
iii 1.2.5).(4.10)1.(8.10.16.532
i4138
36
0.3 The Power of complex numbers
--------------------------------------------------------------
The power of complex number i:
ii 1
12 i
iiiii )1(23
1)1()1(224 iii
iiiii 145
1)1(1246 iii
iiiii )(1347
111448 iii
Powers of i
If n is a positive integer, then in = ir, where r is the remainder
of the division of n by 4.
37
0.3 The Power of complex numbers
---------------------------------------------------------------------------------------------------------------------------
Example
Find
1987z i
1987 4 496 3
1987z i
4 496 3 3i i i
38
0.3 The Power of complex numbers
-----------------------------------------------------------------------------------------------------
Let z = 1 + i.
a) Find z3;
b) Find z100.
Example
3 3) (1 )a z i 2 31 3 3i i i
1 3 3z i i
2 2z i
) Similarly, but it's complicated so we try to do
another way.
b
39
[ (cos sin )] (cos sin )n nr i r n i n
The De Moivre formula
Let r > 0 and n be a natural number. Then
0.3 The Power of complex numbers
-----------------------------------------------------------------------------------------------------
z a bi (cos sin )r i
2 2(cos2 sin2 )z z z r i
3 2 3(cos3 sin3 )z z z r i
1 (cos sin )n n nz z z r n i n
40
Example. Compute, using de Moivre’s formula :
a) (1 + i)25 200)31( ib)
20
17
)212(
)3(
i
i
c)
Solution. a) Step 1. Write 1 + i in a trigonometric form
)
4
sin
4
(cos21
iiz
Step 2. Using the Moivre’s formula:
)
4
25
sin
4
25
(cos)2()]
4
sin
4
(cos2[ 252525
iiz
Step 3. Simplify a result )
4
sin
4
(cos221225
iz
0.3 The Power of complex numbers
-----------------------------------------------------------------------------------------------------
41
0.4 The root of complex numbers
-----------------------------------------------------------------------------------------------------
Definition of nth root of complex number
A number w is an nth root of a nonzero complex number
z if wn = z, where n is a positive integer.
(cos sin )z a bi r i
2 2
(cos sin ) (cos sin )n nn k
k k
z r i z r i
n n
Where k = 0, 1, 2, , n – 1.
A complex number has exactly n n-th roots
42
0.4 The root of complex numbers
-----------------------------------------------------------------------------------------------------
Example. Find the nth root of each case. Sketch the roots z1, z2,
, zn-1on an appropriate circle centered at the origin.
3 8a)
5 1 ib)
8
16
1
i
i
c) 6
1
3
i
i
d)
5 12ie) 1 2if)
43
0.4 The root of complex numbers
-----------------------------------------------------------------------------------------------------
Solution a)
Write in a trigonometric form 8 8(cos0 sin 0)i
Use the formula
3 0 2 0 28(cos0 sin 0) 2(cos sin )
3 3
k
k k
i z i
0,1,2.k
44
0.4 The root of complex numbers
----------------------------------------------------------------------------------------------------
solution b)
Write in a trigonometric form
Use the formula
44
2 2
6 62(cos sin ) 2(cos sin )
6 6 4 4
k
k k
i z i
0,1,2,3.k
3 2(cos sin )
6 6
i i
0 z
1 z
2 z
3 z
45
0.5 The Fundamental Theorem of Algebra
---------------------------------------------------------------------------------------------------------------------------
The German mathematician Carl Friedrich Gauss (1777-1855)
was the first to prove that every polynomial has at least one
complex zero.
The Fundamental Theorem of Algebra
If P(z) is a polynomial of degree with complex
coefficients, then P(z) has at least one complex zero.
1n
The Number of Zeros of a Polynomial
If P(z) is a polynomial of degree with complex
coefficients, then P(z) has exactly n complex zeros, provided
each zero is counted according to its multiplicity.
1n
46
0.5 The Fundamental Theorem of Algebra
---------------------------------------------------------------------------------------------------------------------------
Although the Fundamental Theorem and its corollary give
information about the existence and the number of zeros of a
polynomial, they do not provide a method of actually finding
the zeros.
The Conjugate Pair Theorem
If a + bi is a complex zero of the polynomial P(z) with real
coefficients, then the conjugate a – bi is also a complex zero
of the polynomial.
If a polynomial has real coefficients, then the following
theorem can helps us determine the zeros of the polynomial.
Proof. ...
47
0.5 The Fundamental Theorem of Algebra
---------------------------------------------------------------------------------------------------------------------------
Example. (Use the conjugate Pair theorem to Find Zeros)
Find all the zeros of given
that 2 + i is a zero.
4536144)( 234 zzzzzP
Solution. Because the coefficients are real numbers and 2 + i
is a zero, the Conjugate Pair Theorem implies that 2 –i must
also be a zero.
P(z) has a factor (z – (2 + i))(z - (2 – i)) =
= z2 – 4z + 5
P(z) may be written in the factored form
P(z) = (z2 – 4z + 5)(z2 + 9)
z2 + 9 has 3i and –3i as zeros. Therefore the four zeros
of P(z) are 2 + i, 2 – i, 3i, -3i.
48
0.5 The Fundamental Theorem of Algebra
---------------------------------------------------------------------------------------------------------------------------
Example. Solve following equations in C.
015 iza)
0122 izzd)
0224 zzc)
012 zzb)
Solution. Solve the quadratic equation 02 cbzaz
acb 42 Step 1. Compute
Step 2. Find
2,1
2 4 acb
Step 3.
a
b
z
a
b
z
2
;
2
2
2
1
1
49
Conclusion
---------------------------------------------------------------------------------------------------------------
2. The trigonometric form
)sin(cos irz
3. The power of a complex number
)sin(cos)]sin(cos[ ninrirz nnn
4. The n-th root of a complex number
)
2
sin
2
(cos)sin(cos
n
k
i
n
k
rzirz nkn
n
.1,...,3,2,1 nk
1. The algebraic form
biaz
50
Perform the following operation
Exercise 1
)2(
)32(
5
2
ii
i
z
51
Write the following number in the trigonometric form.
Exercise 2
)3)(1( iiz
52
Write the given number in the standard form
Exercise 3
5)32( iz
53
Construct the domains of point z, given the condition
Exercise 4
1|21| iz
54
Construct the domains of point z, given the condition
Exercise 5
4
||
Argz
55
Compute, using de Moivre’s formula
Exercise 6
20
17
)3(
)1(
i
i
56
Exercise 7
Express and in terms of functions of the angle . 5cos 5sin
Express and in terms of functions of the angle . ncos nsin
57
Exercise 8
Find , where
31
1
i
i
z
6 z
58
Exercise 9
Find , where 16z4 z
59
Exercise 10
Find 3 22 i
60
Exercise 11
Find i41
61
Exercise 12
Solve the equation 07 iz
62
Exercise 13
Solve the equation 012 izz
63
Exercise 14
Show that the complex number 2 + 3i is a root of the
equation
05216174 234 zzzz
and hence find the other three roots.
64
Exercise 15
Solve the equation
02)22()2( 23 iziziz
given the equation has a pure imaginary root.
65
Exercise 16
Factor x3 + 8 as a product of linear factors.
66
Exercise 17
Find
100
100
98
100
4
100
2
100
0
100 CCCCCA
67
Exercise 18
Find
nA cos3cos2coscos
68
Exercise 19
Find
2 cos cos( ) cos( ) cos( )A b b b b n
69
Write in the standard form
Exercise 20
3(1 2 )
2 3
i
z
i
Find all the numbers z such that
Exercise 21
| 1 2 | | 2 |z i z i
70
Let z be a complex number such that |z| = 2. Show that
Exercise 22
6 8 13z i
Let z be a complex number such that |z| = 1. Show that
Exercise 23
21 | 3| 4z
71
Find all numbers z such that
Exercise 23
2z z i
Find all numbers z such that
Exercise 24
2
1 12 6z i z
72
Let z be a nonzero complex number. Find the module of
following number
Exercise 25
2008z i
z
Determine all complex numbers z such that
Exercise 26
z
k
z i
where k is a positive real number.
73
Find all complex numbers z such that
Exercise 28
4
1
z i
z i
Find all numbers z satisfied following two conditions
Exercise 27
1
1
z
z i
and
3
1
z i
z i
74
Find the real and imaginary part of the number
Exercise 29
3 2
1
i i
z
i i
Solve the equation .
Exercise 30
2 | | 0z z
75
Write following numbers in trigonometric form
Exercise 31
2) sin 2sin
2
a i
) cos (1 sin ) b i
Find the square root of the number z = - 8 + 6i.
Exercise 32
76
Show that, if is an pure imaginary number, then |z| = 1.
Exercise 34
1
1
z
z
Find the real part of the number
Exercise 33
1
1
z
z
where |z| = 1 and 1.z
77
Các file đính kèm theo tài liệu này:
- dang_van_vinhchapter0_complexnumber_9982.pdf