Signal processing - The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations
and Time – Domain Behavior
7. The One – Sided z – Transform
42 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 779 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Signal processing - The z – Transform, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
SIGNAL PROCESSING
The z – Transform
Contents
I. Introduction
II. Discrete – Time Signals and Systems
III.The z – Transform
IV. Fourier Representation of Signals
V. Transform Analysis of LTI Systems
VI. Sampling of Continuous – Time Signals
VII.The Discrete Fourier Transform
VIII.Structures for Discrete – Time Systems
IX. Design of FIR Filters
X. Design of IIR Filters
XI. Random Signal Processing
sites.google.com/site/ncpdhbkhn 2
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations
and Time – Domain Behavior
7. The One – Sided z – Transform
sites.google.com/site/ncpdhbkhn 3
sites.google.com/site/ncpdhbkhn 4
The z – Transform (1)
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
k k k
x n x k n k y n x k h n k h k x n kδ
∞ ∞ ∞
=−∞ =−∞ =−∞
= − → = − = −∑ ∑ ∑
for all[ ] ,
Re( ) Im( )
nx n z n
z z j z
=
= +
for all[ ] [ ] [ ] ,n k k n
k k
y n h k z h k z z n
∞ ∞
− −
=−∞ =−∞
→ = =
∑ ∑
( ) [ ]
k
k
H z h k z
∞
−
=−∞
= ∑
for all[ ] ( ) ,ny n H z z n→ =
for all for all[ ] , [ ] ( ) ,n nk k k k k
k k
x n c z n y n c H z z n= → =∑ ∑
The z – Transform (2)
• ROC (region of convergence):
the set of values of z for which
X(z) converges
• Zeros: the values of z for which
X(z) = 0
• Poles: the values of z for which
X(z) is infinite
sites.google.com/site/ncpdhbkhn 5
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑
0
ω
jz e ω=
1
Im( )z
Re( )z
Unit circle
z – plane
0
ω
jz re ω=
cosr ω
Im( )z
Re( )z
z – plane
sinr ω
r
sites.google.com/site/ncpdhbkhn 6
The z – Transform (3)
Ex. 1
1 21 2 3 4 5 1 2 3 4 5[ ] { }, [ ] { }.x n x n↑ ↑= =Given
Determine their z – transforms?
( ) [ ] n
n
X z x n z
∞
−
=−∞
= ∑
0 1 2 3 4
1 1 1 1 1 10 1 2 3 4( ) [ ] [ ] [ ] [ ] [ ]X z x z x z x z x z x z
− − − −
= + + + +
1 2 3 41 2 3 4 5z z z z− − − −= + + + +
ROC: entire z – plane except z = 0
2 1 0 1 2
2 2 2 2 2 22 1 0 1 2
( ) ( )( ) [ ] [ ] [ ] [ ] [ ]X z x z x z x z x z x z− − − − − −= − + − + + +
2 0 1 21 2 3 4 5z z z z z− −= + + + +
2 1 22 3 4 5z z z z− −= + + + +
ROC: entire z – plane except z = 0 & z = ∞
sites.google.com/site/ncpdhbkhn 7
The z – Transform (4)
Ex. 2
1 2 3 0[ ] [ ], [ ] [ ], [ ] [ ],x n n x n n k x n n k kδ δ δ= = − = + >
Determine their z – transforms?
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑
1 0 1 2
1 1 1 1 11 0 1 2
( )( ) ... [ ] [ ] [ ] [ ] ...X z x z x z x z x z− − − −= + − + + + +
1 0 1 20 1 0 0 1( )... ...z z z z− − − −= + + + + + =
ROC: entire z – plane
sites.google.com/site/ncpdhbkhn 8
The z – Transform (5)
Ex. 3
1 0
0 otherwise
,
[ ]
,
n M
x n
≤ ≤
=
Find the z – transforms of the square – pulse sequence
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑
ROC: |z| > 1
0
1
M
n
n
z−
=
=∑
1
2 3 11 if 1
1
... ,
M
N AA A A A A
A
+
−
+ + + + + = <
−
1
1
1
1
( )
( )
MzX z
z
− +
−
−
→ =
−
1 1 1z z−
0 1
Im
Re
ROC
sites.google.com/site/ncpdhbkhn 9
The z – Transform (6)
Ex. 4
Find the z – transforms of the sequence x[n] = anu[n]?
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑ 1
0 0
( )
n n n
n n
a z az
∞ ∞
− −
= =
= =∑ ∑
2 3 11 if 1
1
... ,A A A A
A
+ + + + = <
−
1
1
1
( )
zX z
az z a−
→ = =
− −
Zero: z = 0
Pole: z = a
1 1az z a− ROC: |z| > a
sites.google.com/site/ncpdhbkhn 10
The z – Transform (7)
Ex. 4
Find the z – transforms of the sequence x[n] = anu[n]? 1
1
1
( )
zX z
az z a−
= =
− −
Zero: z = 0; pole: z = a; ROC: |z| > a
0
1
n
0 1a< <
0
1
n
1a =
0
1
n
1a >
0
1
Im
Re
ROC
a
0
1
Im
Re
ROC
0
1
Im
Re
ROC
a
sites.google.com/site/ncpdhbkhn 11
The z – Transform (8)
Ex. 5
0 0
1
0
,
[ ] [ ]
,
n
n
n
x n a u n
a n
≥
= − − − =
− <
Find the z – transforms of the sequence
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑
1 1
1
( )
n n n
n n
a z az
− −
− −
=−∞ =−∞
= − = −∑ ∑
2 3 11 if 1
1
... ,A A A A
A
+ + + + = <
−
1
1
1
1
( )
zX z a z
a z z a
−
−
→ = − =
− −
Zero: z = 0
Pole: z = a
1 1a z z a− < → < ROC: |z| < a
1 1 2 21( ...)a z a z a z− − −= − + + +
[ ] [ ] ( )n
z
x n a u n X z
z a
= → =
−
Zero: z = 0; pole: z = a; ROC: |z| > a
0
n
sites.google.com/site/ncpdhbkhn 12
The z – Transform (9)
Ex. 6
0
0
,
[ ]
,
n
n
a n
x n
b n
≥
=
− <
Find the z – transforms of the sequence
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑
1
0
n n n n
n n
b z a z
− ∞
− −
=−∞ =
= − +∑ ∑
1
0
If 1 n n
n
z
az z a a z
z a
∞
− −
=
→ =
−
∑
( )
z zX z
z b z a
→ = +
− −
1
1If 1 n n
n
zb z z b b z
z b
−
− −
=−∞
< → < → − =
−
∑
Zero: z = 0
Pole: z = a, b
ROC: a < |z| < b
sites.google.com/site/ncpdhbkhn 13
The z – Transform (10)
0 n
0
Im
Re
ROC
a
0
n
0
Im
Re
ROC
b
b
a
Im
Re
ROC
b0 a
0 n
ROC: |z| > a ROC: |z| < a ROC: a < |z| < b
sites.google.com/site/ncpdhbkhn 14
The z – Transform (11)
Ex. 7
0 00 0 2[ ] (cos ) [ ], ,
nx n r n u n rω ω pi= > ≤ ≤Find the z – transforms of the sequence
0
0
(cos )
n n
n
r n zω
∞
−
=
=∑( ) [ ] n
n
X z x n z
∞
−
=−∞
= ∑
1 1
2 2
cos sin cos
j j j
e j e eθ θ θθ θ θ −= + → = +
0 01 1
0 0
1 1
2 2
( ) ( ) ( )
j jn n
n n
X z re z re zω ω
∞ ∞
−− −
= =
→ = +∑ ∑
2 2 1cos sin cos sinje jθ θ θ θ θ= + = + =
0 01 1 11 1 1j jre z re z rz z rω ω−− − −&
0 01 1
1 1 1 1 ROC
2 1 2 1
( ) , :j jX z z r
re z re zω ω−− −
→ = + >
− −
sites.google.com/site/ncpdhbkhn 15
The z – Transform (12)
Ex. 7
0 00 0 2[ ] (cos ) [ ], ,
nx n r n u n rω ω pi= > ≤ ≤Find the z – transforms of the sequence
0 0 0 0
0 0
1 1 1
1 1 1 2 2
0
1 1 2
2 1 1 2 1 2
( ) ( ) ( )
( )( ) [ ( cos ) ]
j j j j
j j
re z re z rz e e
re z re z r z r z
ω ω ω ω
ω ω ω
− −− − −
−− − − −
− + − − +
= =
− − − +
0 01 1
1 1 1 1
2 1 2 1
( ) j jX z
re z re zω ω−− −
= +
− −
2cos sin cosj j je j e eθ θ θθ θ θ−= + → + =
1
0
1 2 2
0
1
1 2
(cos )
( )
( cos )
r zX z
r z r z
ω
ω
−
− −
−
→ =
− +
0 0
0( cos )
( )( )
j j
z z r
z re z reω ω
ω
−
−
=
− −
Zero: z1 = 0; z2 = rcosω0
ROC: |z| > r
0 0
1 2Pole : ;
j jp re p reω ω−= =
0
r
Im
Re
ROC
1z 2z
1p
2p
The z – Transform (13)
• ROC
– There is no pole inside a ROC
– The ROC is a connected region
– For finite duration sequences, the ROC is the
entire z – plane, sometimes except for z = 0 and
z = ∞
• The z – transform
–We need both X(z) and its ROC
– X(z) is not defined outside the ROC
sites.google.com/site/ncpdhbkhn 16
sites.google.com/site/ncpdhbkhn 17
The z – Transform (14)
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations
and Time – Domain Behavior
7. The One – Sided z – Transform
sites.google.com/site/ncpdhbkhn 18
sites.google.com/site/ncpdhbkhn 19
The Inverse z – Transform (1)
11
2
[ ] ( ) n
C
x n X z z dzjpi
−
= ∫
1 2 1
0 1 2 1
1 2
1 21
( )...
( )
...
N
N
N
N
b b z b z b zX z
a z a z a z
− − − −
−
− − −
+ + +
=
+ + +
sites.google.com/site/ncpdhbkhn 20
The Inverse z – Transform (2)
Ex. 1
1
1 1
1
1 1 0 2
( )
( )( . )
zX z
z z
−
− −
+
=
− −
1
1 2
1 1 1 1
1
1 1 0 2 1 1 0 2( )( . ) .
z K K
z z z z
−
− − − −
+
= +
− − − −
1 1 1
1 21 1 0 2 1( . ) ( )z K z K z
− − −→ + = − + −
1 21 1 1 1 0 2 1 1 1( . ) ( )z K K= → + = − × + − 1 2 5.K→ =
2 1 5.K→ = −1 20 2 1 5 1 0 2 5 1 5. ( . ) ( )z K K= → + = − × + −
1 1
2 5 1 5
1 1 0 2
. .
( )
.
X z
z z− −
→ = −
− −
sites.google.com/site/ncpdhbkhn 21
The Inverse z – Transform (3)
Ex. 1
1
1
1
[ ] , ROC :
n
a u n z a
az−
→ >
−
If 1z >
1
1
2 5 2 5
1
1 5 1 5 0 2
1 0 2
.
. [ ]
.
. ( . ) [ ]
.
n
u n
z
u n
z
−
−
→
−→
− → −
−
1
1 1
1
1 1 0 2
( )
( )( . )
zX z
z z
−
− −
+
=
− −
1 1
2 5 1 5
1 1 0 2
. .
.z z− −
= −
− −
2 5 1 5 0 2[ ] . [ ] . ( . ) [ ]nx n u n u n→ = −
1
11
1
[ ] , ROC :
n
a u n z a
az−
− − − → <
−
If 0 2.z <
1
1
2 5 2 5 1
1
1 5 1 5 0 2 1
1 0 2
.
. [ ]
.
. ( . ) [ ]
.
n
u n
z
u n
z
−
−
→ − − −
−→
− → − −
−
2 5 1 1 5 0 2 1[ ] . [ ] . ( . ) [ ]nx n u n u n→ = − − − + − −
If 0 2 1. z< <
1
1
2 5 2 5 1
1
1 5 1 5 0 2
1 0 2
.
. [ ]
.
. ( . ) [ ]
.
n
u n
z
u n
z
−
−
→ − − −
−→
− → −
−
2 5 1 1 5 0 2[ ] . [ ] . ( . ) [ ]nx n u n u n→ = − − − −
sites.google.com/site/ncpdhbkhn 22
The Inverse z – Transform (4)
Ex. 2
1
1 2
1
1 2 5
( )
.
zX z
z z
−
− −
+
=
− +
1 2 1 25
1 21 2 5 0 0 5 1 5 1 58
.
,
. . . .
jz z p j e− − ±− + = → = ± =
1
1 2
1 2 1 1
1 2
1
1 2 5 1 1.
z K K
z z p z p z
−
− − − −
+
= +
− + − −
1 1 1
1 2 2 11 1 1( ) ( )z K p z K p z
− − −→ + = − + −
1 1 1 2 1 21 1 1 1 1/ ( / ) ( )z p p K p p K= → + = − + −
0 93
1 0 5 0 67 0 83
.. . . jK j e−→ = − =
0 93
2 0 5 0 67 0 83
.. . . jK j e→ = + =2 2 1 2 1 21 1 1 1 1/ ( ) ( / )z p p K K p p= → + = − + −
0 93 1 25 0 93 1 250 83 1 58 0 83 1 58. . . .[ ] . ( . ) [ ] . ( . ) [ ]j j n j j nx n e e u n e e u n− −→ = +
1 25 0 93 1 25 0 930 83 1 58 ( . . ) ( . . ). ( . ) ( )n j n j ne e− − −= +
1 25 0 93 1 25 0 93 2 1 25 0 93( . . ) ( . . ) cos( . . )j n j ne e n− − −+ = −
1 67 1 58 1 25 0 93 1 67 1 58 1 25 53 13o[ ] . ( . ) cos( . . ) [ ] . ( . ) cos( . . ) [ ]n nx n n u n n u n→ = − = −
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations
and Time – Domain Behavior
7. The One – Sided z – Transform
sites.google.com/site/ncpdhbkhn 23
sites.google.com/site/ncpdhbkhn 24
Properties of the z – Transform
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations
and Time – Domain Behavior
sites.google.com/site/ncpdhbkhn 25
sites.google.com/site/ncpdhbkhn 26
System Function of LTI Systems
(1)
[ ] [ ]* [ ] [ ] [ ]
k
y n x n h n x k h n k
∞
=−∞
= = −∑
z – transform
[ ]x n
[ ]y n( ) ( ) ( )Y z X z H z=
z – transform
[ ]h n
Inverse
z – transform
( )X z
( )H z
x n h n X z H z→[ ]* [ ] ( ) ( )
sites.google.com/site/ncpdhbkhn 27
System Function of LTI Systems
(2)Ex.
Given a system with impulse response h[n] = anu[n], |a| < 1, and an input
x[n] = u[n]. Find the output?
[ ] [ ]* [ ]y n h n x n= ( ) ( ) ( )Y z H z X z→ =
1
0
1
1
( ) ,n n
n
H z a z z a
az
∞
−
−
=
= = >
−
∑
1
0
1 1
1
( ) ,n
n
X z z z
z
∞
−
−
=
= = >
−
∑
1 1
1 1 1
1 1
( ) , max{ , }
( )( )
Y z z a
az z− −
= > =
− −
1 1
1 1 1
1 1 1
,
a
z
a z az− −
= − >
− − −
1
11 1
1 1
[ ] ( [ ] [ ]) [ ]
n
n ay n u n a u n u n
a a
+
+ −
= − =
− −
System Function of LTI Systems
(3)
• A system function H(z) with the ROC that is the
exterior of a circle, extending to infinity, is a
necessary condition for a discrete – time LTI
system to be causal, but not a sufficient one
• An LTI system is stable if and only if the ROC of
the system function H(z) includes the unit circle
|z| = 1
• An LTI system with rational H(z) is both causal
and stable if and only if all poles of H(z) are
inside the unit circle and its ROC is on the
exterior fo a circle, extending to infinity
sites.google.com/site/ncpdhbkhn 28
sites.google.com/site/ncpdhbkhn 29
System Function of LTI Systems
(4)
H1(z)
[ ]x n y n[ ]
+
H2(z)
H1(z)+H2(z)
[ ]x n [ ]y n
H1(z)
[ ]x n [ ]y n
H2(z) H1(z)H2(z)
[ ]x n [ ]y n
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations and
Time – Domain Behavior
7. The One – Sided z – Transform
sites.google.com/site/ncpdhbkhn 30
sites.google.com/site/ncpdhbkhn 31
LTI Systems Characterized by
LCCDE (1)
1 1
[ ] [ ] [ ]
N M
k k
k k
y n a y n k b x n k
= =
= − − + −∑ ∑
1 1
[ ] [ ] [ ]
N M
k k
k k
y n a y n k b x n k
= =
→ + − = −∑ ∑
[ ] ( )y n Y z→
1 1
[ ] ( ) : [ ] ( )
N N
k k
k k
k k
y n k z Y z a y n k a z Y z− −
= =
− → − →
∑ ∑
1 1
[ ] ( ) : [ ] ( )
M M
k k
k k
k k
x n k z X z b x n k b z X z− −
= =
− → − →
∑ ∑
1 1
1 ( ) ( )
N M
k k
k k
k k
a z Y z b z X z− −
= =
→ + =
∑ ∑
sites.google.com/site/ncpdhbkhn 32
LTI Systems Characterized by
LCCDE (2)
1 1
[ ] [ ] [ ]
N M
k k
k k
y n a y n k b x n k
= =
= − − + −∑ ∑
1 1
1 ( ) ( )
N M
k k
k k
k k
a z Y z b z X z− −
= =
→ + =
∑ ∑
1
1
1
( )
( )
( )
M
k
k
k
N
k
k
k
b z
Y z H z
X z
a z
−
=
−
=
→ = =
+
∑
∑
11
0 0 1
1 0 0
( ) ... ( )...( )
M
k M M M MM
k M
k
b bB z b z b z z z b z z z z z
b b
− − − −
=
= = + + + = − −
∑
1
1 1
1
1( ) ( ... ) ( )...( )
N
k N N N N
k N N
k
A z a z z z a z a z z p z p− − − −
=
= + = + + + = − −∑
1
1 1
0 0
1
1 1
1
1
( ) ( )
( )
( )
( )
( ) ( )
M M
M k k
k k
N NN
k k
k k
z z z z
B z zH z b b
A z z
z p p z
−
−
= =
−
−
= =
− −
→ = = =
− −
∏ ∏
∏ ∏
sites.google.com/site/ncpdhbkhn 33
LTI Systems Characterized by
LCCDE (3)
1 2 1 21 4 3 5 4 3( ) ( ) ( ) ( )z z Y z z z X z− − − −− + = − +
Ex.
1 2
1 2
5 4 3
1 4 3
( )
( ) .
( )
Y z z zH z
X z z z
− −
− −
− +
= =
− +
Consider a system function
Find its corresponding difference equation?
1
2
1
2
( ) [ ]
( ) [ ]
z X z x n
z X z x n
−
−
→ −
→ −
4 1 3 2 5 4 1 3 2[ ] [ ] [ ] [ ] [ ] [ ]y n y n y n x n x n x n→ − − + − = − − + −
4 1 3 2 5 4 1 3 2[ ] [ ] [ ] [ ] [ ] [ ]y n y n y n x n x n x n→ = − − − + − − + −
sites.google.com/site/ncpdhbkhn 34
LTI Systems Characterized by
LCCDE (4)
1
1
1
( )
M
k
k
k
N
k
k
k
b z
H z
a z
−
=
−
=
=
+
∑
∑
1
1 11
M N N
k k
k
k k k
AC z
p z
−
−
−
= =
= +
−
∑ ∑
1 1
[ ] [ ] ( ) [ ]
M N N
n
k k k
k k
h n C n k A p u nδ
−
= =
→ = − +∑ ∑
0 1 1 0
Stable : [ ]
M N N
n
k k k
n k k n
h n C A p
∞ − ∞
= = = =
= + < ∞∑ ∑ ∑ ∑
1 for 1,...,kp k N→ < =
A causal LTI with a rational system function is stable if and only if all poles
of H(z) are inside the unit circle in the z – plane. The zeros can be anywhere.
LTI Systems Characterized by
LCCDE (5)
• If N > 0: an Infinite Impulse Response (IIR) system
• If N = 0:
a Finite Impulse Response (FIR) system
• If N ≥ 1: a recursive system
• If N = 0: a nonrecursive system
• If ak = 0, for k = 1, , N: all – zero system
• If bk = 0, for k = 1, , M: all – pole system
sites.google.com/site/ncpdhbkhn 35
1
1
1 1 1 1
1
11
( ) [ ] [ ] ( ) [ ]
M
k
k M N N M N N
k nk k
k k k kN
k k k k kk
k
k
b z
AH z C z h n C n k A p u n
p z
a z
δ
−
− −
−=
−
− = = = =
=
= = + → = − +
−
+
∑
∑ ∑ ∑ ∑
∑
0
0
0
,
[ ] [ ]
, otherwise
M
n
k
k
b n M
h n b n kδ
=
≤ ≤
= − =
∑
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero
Locations and Time – Domain Behavior
7. The One – Sided z – Transform
sites.google.com/site/ncpdhbkhn 36
sites.google.com/site/ncpdhbkhn 37
Connections between Pole – Zero
Locations and Time – Domain Behavior (1)
th
th
1
1
1 1
first-order systemorder FIR1
order system
11
( )
( )
M
k
k M N N
kk k
kN
k k k k
k
NM Nk
N
b z
AH z C z
p z
a z
−
−
−=
−
− = =
−=
= = +
−
+
∑
∑ ∑
∑
1
1 0
N
k
k
k
a z−
=
+ =∑The equation has K1 real roots & 2K2 complex conjugate roots
1
0 1
1 1 1 2
1 21 1 1
*
*
b b zA A
pz p z a z a z
−
− − − −
+
+ =
− − + +
1 2 1
0 1
1 1 2
1 1 1 1 21 1
( )
K KM N
k k k k
k
k k kk k k
A b b zH z C z
p z a z a z
−
−
−
− − −
= = =
+
= + +
− + +
∑ ∑ ∑
sites.google.com/site/ncpdhbkhn 38
Connections between Pole – Zero
Locations and Time – Domain Behavior (2)
11
( ) , , real [ ] [ ]n
bH z a b h n ba u n
az−
= → =
−
0
1
Im
Re
0
1
n
Decaying alternating
exponential
0
1
n
Unit alternating step
0
1
n
Growing alternating
exponential
0
1
n
Decaying
exponential
0
1
n
Growing exponential
0
1
n
Unit step
sites.google.com/site/ncpdhbkhn 39
Connections between Pole – Zero
Locations and Time – Domain Behavior (3)
1
0 1 0 1
1 2 2
1 2 1 21
( )
( ) k k
k k
b b z z b z bH z
a z a z z a z a
−
− −
+ +
= =
+ + + +
2
1 1 21
1 2 1 2
0
4
0
2,
Zero : ; , pole :
a a ab
z z p
b
− ± −
−
= = =
02[ ] cos( ) [ ]
nh n A r n u nω θ= +
0
n
n
r
[ ]h n
0
1
Im
Rer1r <
sites.google.com/site/ncpdhbkhn 40
Connections between Pole – Zero
Locations and Time – Domain Behavior (4)
0
n
n
r
[ ]h n
0
1
Im
Re1r >
0
1
Im
Re1r = 0
n
1r =[ ]h n
The z – Transform
1. The z – Transform
2. The Inverse z – Transform
3. Properties of the z – Transform
4. System Function of LTI Systems
5. LTI Systems Characterized by Linear
Constant – Coefficient Difference Equations
6. Connections between Pole – Zero Locations
and Time – Domain Behavior
7. The One – Sided z – Transform
sites.google.com/site/ncpdhbkhn 41
sites.google.com/site/ncpdhbkhn 42
The One – Sided z – Transform
two-sided/bilateral -transform( ) [ ] ( )n
n
X z x n z z
∞
−
=−∞
= ∑
0
one-sided/unilateral -transform( ) { [ ]} [ ] ( )n
n
X z Z x n x n z z
∞
+ + −
=
= =∑
1 2 31 1 0 1 2{ [ ]} [ ] [ ] [ ] [ ] ...Z x n x x z x z x z+ − − −− = − + + + +
1 1 21 0 1 2[ ] ( [ ] [ ] [ ] ...)x z x x z x z− − −= − + + + +
11[ ] ( )x z X z− += − +
1 21 2 1{ [ ]} [ ] [ ] ( )Z x n x x z z X z+ − − +− = − + − +
1
{ [ ]} ( ) [ ]
k
k m k
m
Z x n k z X z x m z+ − + −
=
− = + −∑
Các file đính kèm theo tài liệu này:
- z_transform_8914.pdf