Nâng cao hiệu quả dạy học môn toán ở các lớp cuối cấp tiểu học trên cơ sở vận dụng lý thuyết kiến tạo - Trần Ngọc Bích

Bƣớc 3: Trình bày lời giải HS nêu các bƣớc tính, có nhận xét, bổ sung. Sau đó yêu cầu HS trình bày bài giải. Bƣớc 4: Kiểm tra và nghiên cứu lời giải HS tự kiểm tra kết quả và rút ra kinh nghiệm. HS suy nghĩ và tự đặt câu hỏi: Cách giải nhƣ vậy đã ngắn gọn chƣa ? Có cách giải nào ngắn hơn không? Còn cách nào nữa không? KẾT LUẬN DH theo thuyết KT sẽ góp phần phát triển năng lực tìm tòi, khám phá, năng lực giải quyết vấn đề, tƣ duy toán học, cho HS. Tuy nhiên, trong DH, GV cần vận dụng linh hoạt các biện pháp sao cho đạt hiệu quả cao nhất, góp phần nâng cao chất lƣợng DH môn Toán trong trƣờng tiểu học. Các biện pháp đƣợc đề xuất là phù hợp với thực tiễn giáo dục, vận dụng đƣợc vào quá trình DH môn Toán ở các lớp cuối cấp tiểu học.

pdf6 trang | Chia sẻ: thucuc2301 | Lượt xem: 820 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Nâng cao hiệu quả dạy học môn toán ở các lớp cuối cấp tiểu học trên cơ sở vận dụng lý thuyết kiến tạo - Trần Ngọc Bích, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trần Ngọc Bích và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 120(06): 183 – 188 183 NÂNG CAO HIỆU QUẢ DẠY HỌC MÔN TOÁN Ở CÁC LỚP CUỐI CẤP TIỂU HỌC TRÊN CƠ SỞ VẬN DỤNG LÝ THUYẾT KIẾN TẠO Trần Ngọc Bích*, Trần Thị Ngọc Anh, Ngô Thị Duyên, Đinh Thị Hƣơng, Phạm Thị Nhung, Lại Thị Thu Thủy Trường Đại học Sư phạm – ĐH Thái Nguyên TÓM TẮT Vận dụng lý thuyết kiến tạo trong dạy học nói chung, dạy học môn Toán nói riêng sẽ góp phần phát triển năng lực ngƣời học, nâng cao hiệu quả dạy học. Qua các hoạt động dạy học, học sinh tự kiến tạo kiến thức dƣới sự điều khiển, định hƣớng của GV. Đặc biệt, đối với các lớp cuối cấp tiểu học (lớp 4, lớp 5) thì việc rèn luyện cho học sinh năng lực sáng tạo, năng lực hợp tác, khả năng tự học là cần thiết. Do đó, chúng tôi đề xuất một số biện pháp góp phần nâng cao hiệu quả dạy học môn Toán ở các lớp cuối cấp tiểu học trên cơ sở vận dụng lý thuyết kiến tạo. Từ khóa: toán tiểu học, Giáo dục tiểu học, dạy học môn Toán, kiến tạo, dạy học kiến tạo. ĐẶT VẤN ĐỀ* Toán học là môn học không chỉ trang bị cho HS kiến thức toán học mà còn góp phần hình thành ở học sinh (HS) năng lực tƣ duy, phƣơng pháp làm việc khoa học. Thực tế hoạt động dạy học (DH) môn Toán hiện nay đƣợc quy về hoạt động định hƣớng, tổ chức, giúp đỡ, điều khiển các hoạt động học tập của HS. Một trong những yếu tố quan trọng dẫn tới thành công trong quá trình này là ngƣời dạy phải biết tổ chức cho ngƣời học KT tri thức. Do đó, vận dụng lý thuyết kiến tạo (KT) trong DH môn Toán ở tiểu học sẽ góp phần nâng cao hiệu quả DH, phát huy đƣợc tính tích cực học tập của HS. NỘI DUNG Đôi nét về dạy học kiến tạo DH KT là DH tổ chức cho HS KT tri thức. Tƣ tƣởng nền tảng của lý thuyết KT là đặt vai trò của chủ thể nhận thức lên vị trí hàng đầu của quá trình nhận thức. Xuất phát từ bản chất của KT trong nhận thức, nhiều nhà nghiên cứu đã phân chia KT thành hai lại: KT cơ bản và KT xã hội. Học tập theo lý thuyết KT có những ƣu điểm sau: Tri thức đƣợc KT một cách tích cực bởi chủ thể nhận thức, không phải tiếp thu một cách thụ động từ bên ngoài hay bản thân HS * Tel: 0904 321939, Email: bichtransptn@gmail.com là ngƣời tích cực chủ động KT ra tri thức. Nhận thức là một quá trình thích nghi và tổ chức lại thế giới quan của chính mỗi ngƣời, vì vậy, học tập theo lý thuyết KT sẽ giúp chủ thể nhận thức khám phá ra một thế giới mới chƣa biết tới hoặc chƣa biết đầy đủ [3]. Thực tiễn vận dụng lý thuyết KT trong DH ở trƣờng tiểu học hiện nay Chúng tôi đã tiến hành khảo sát 110 giáo viên (GV) ở một số trƣờng tiểu học của tỉnh Nam Định, Thái Bình, Thái Nguyên về việc vận dụng lý thuyết KT trong DH. Kết quả khảo sát cho thấy 100% GV đều nhận thức đƣợc vai trò của DH theo thuyết KT nhằm phát huy đƣợc tính tích cực, chủ động, sáng tạo của HS, góp phần nâng cao hiệu quả DH môn Toán. 100% GV đều vận dụng lý thuyết KT trong dạy học, trong đó 30% GV sử dụng phƣơng pháp này thƣờng xuyên trong DH, còn lại 70% GV có vận dụng nhƣng không thƣờng xuyên. Tuy nhiên, GV còn nhiều lúng túng vì chƣa có đƣợc những biện pháp cụ thể vận dụng trong thực tiễn DH. Một số biện pháp nâng cao hiệu quả DH môn Toán các lớp cuối cấp tiểu học trên cơ sở vận dụng lý thuyết KT Trên cơ sở nghiên cứu lý luận về dạy học KT, nội dung chƣơng trình môn Toán các lớp cuối cấp nói riêng, thực tiễn DH môn Toán ở trƣờng tiểu học hiện nay chúng tôi đề xuất Trần Ngọc Bích và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 120(06): 183 – 188 184 một số biện pháp nâng cao hiệu quả DH môn Toán ở lớp 4, lớp 5 trên cơ sở vận dụng lý thuyết KT. Biện pháp 1: DH khái niệm theo hướng tổ chức các hoạt động KT Mục đích của biện pháp Biện pháp đƣợc xây dựng nhằm: Giúp HS lĩnh hội kiến thức một cách chủ động, đƣợc học theo đúng nhịp độ của bản thân; Góp phần bồi dƣỡng năng lực dự đoán, khái quát hóa, phát hiện vấn đề cho HS. Cách tiến hành biện pháp Bƣớc 1: Tiếp cận vấn đề GV lựa chọn các vấn đề toán học, yêu cầu HS hoạt động trên các đối tƣợng đƣợc lựa chọn. Các vấn đề toán học gắn với nội dung của bài, đồng thời, hƣớng dẫn HS lựa chọn các đối tƣợng và hoạt động trên các đối tƣợng đƣợc lựa chọn. Bƣớc 2: Hình thành khái niệm Tổ chức cho HS hoạt động trên các đối tƣợng để làm bộc lộ rõ các đặc điểm cơ bản của khái niệm cần hình thành. Từ đó giúp HS dự đoán về khái niệm. Bƣớc 3: Hoàn thiện và củng cố khái niệm Tổ chức cho HS hoàn thiện và củng cố sử dụng khái niệm thông qua hệ thống bài tập hoặc các trò chơi toán học. Ở bƣớc này, GV nên toát yếu lại khái niệm để giúp HS hiểu đúng, hình thành đúng, chính xác khái niệm. Những lưu ý khi thực hiện biện pháp GV phải tổ chức các hoạt động KT phải phù hợp với trình độ, đặc điểm nhận thức của HS. Trong bƣớc tiếp cận vấn đề hay hình thành khái niệm, GV nên tổ chức cho HS thảo luận nhóm để tăng hiệu quả trong quá trình hình thành kiến thức. Ví dụ minh họa: Dạy bài “Giây. Thế kỉ”[1] theo hướng tổ chức các hoạt động KT Bƣớc 1: Tiếp cận vấn đề HS hoàn thành phiếu học tập. Bƣớc 2: Hình thành khái niệm GV yêu cầu HS quan sát mặt đồng hồ và hƣớng dẫn: Ngoài kim giờ, kim phút ta còn thấy kim giây. Khoảng thời gian kim giây đi từ một vạch đến vạch liền sau nó trên mặt đồng hồ là một giây. Khi kim giây chạy đƣợc một vòng trên mặt đồng hồ qua 60 vạch thì kim phút chạy đƣợc 1 phút. GV giúp HS nhận xét: Giây là một đơn vị đo thời gian. 1 phút = 60 giây. GV giới thiệu cho HS: 1 thế kỉ = 100 năm và xác định các thế kỉ. PHIẾU HỌC TẬP Bài 1. Đồng hổ chỉ mấy giờ? Hình A Hình B Hình C Hình A đồng hồ chỉ Hình B đồng hồ chỉ Hình C đồng hồ chỉ Bài 2. Điển số thích hợp vào chỗ chấm 1 ngày = . giờ 1 giờ = . phút Trần Ngọc Bích và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 120(06): 183 – 188 185 Sau đó, GV tổ chức cho HS hoạt động cặp đôi: Một HS nêu năm và hỏi năm đó thuộc thế kỉ thứ bao nhiêu ? Chẳng hạn, một HS hỏi: Năm 1906 thuộc thế kỉ thứ bao nhiêu? HS còn lại phải trả lời: Năm 1906 thuộc thế kỉ XX. Sau đó, hai HS đổi vai trò cho nhau. Bƣớc 3: Hoàn thiện và củng cố khái niệm Để hoàn thiện và củng cố khái niệm thì GV tổ chức cho HS hoạt động cá nhân làm bài tập trong sách giáo khoa và sau đó gọi một vài HS thực hiện trên bảng. GV cho HS liên hệ thực tiễn cuộc sống: - Yêu cầu HS kể tên các hoạt động trong thực tiễn có sử dụng đơn vị đo thời gian là giây. - HS năm sinh của mình và xác định xem năm đó thuộc thế kỉ nào? Biện pháp 2: DH quy tắc, phương pháp trên cơ sở vận dụng lý thuyết KT Mục đích của biện pháp Biện pháp đƣợc xây dựng nhằm mục đích: Giúp HS hình thành đƣợc các quy tắc, phƣơng pháp trong toán học; Giúp HS biết vận dụng quy tắc, phƣơng pháp vào giải bài tập; Rèn luyện khả năng tƣ duy, năng lực suy luận, phán đoán, cho HS; Giúp HS nắm đƣợc bản chất của kiến thức, tạo niềm tin vững chắc cho HS về tri thức mới. Cách tiến hành biện pháp Bƣớc 1: Hình thành quy tắc, phƣơng pháp GV lựa chọn tình huống toán học, yêu cầu HS lựa chọn đối tƣợng và hoạt động trên các đối tƣợng đƣợc lựa chọn nhằm giúp HS củng cố kiến thức cũ và hình thành kiến thức mới. GV tổ chức cho HS hoạt động trên các đối tƣợng đã lựa chọn để giúp HS nắm rõ đƣợc các đặc điểm của đối tƣợng, tạo cơ sở cho việc hình thành quy tắc và phƣơng pháp mới. Từ đó, HS hoạt động, xem xét và phát hiện ra các đặc điểm của quy tắc cần hình thành và đƣa ra dự đoán về quy tắc, phƣơng pháp. Bƣớc 2: Thực hành sử dụng quy tắc, phƣơng pháp GV có thể thiết kế các phiếu học tập để HS làm việc cá nhân hoặc thảo luận nhóm nhỏ để thực hành sử dụng quy tắc, phƣơng pháp. HS trình bày kết quả hoạt động của bản thân với nhóm và cùng với nhóm thống nhất kết quả hoạt động. Các nhóm báo cáo kết quả hoạt động của mình trƣớc lớp và đƣa ra ví dụ để chứng minh cho hoạt động của nhóm. Bƣớc 3: Củng cố quy tắc, phƣơng pháp GV thiết kế các hoạt động củng cố quy tắc, phƣơng pháp giúp HS nắm chắc hơn kiến thức vừa hình thành. GV có thể thiết kế các phiếu học tập với các bài tập trắc nghiệm khách quan vận dụng quy tắc, phƣơng pháp để kiểm tra mức độ vận dụng quy tắc, phƣơng pháp và sự linh hoạt trong quá trình vận dụng của HS. Ngoài ra, GV tổ chức cho HS hoạt động vận dụng quy tắc, phƣơng pháp vào giải quyết các vấn đề thực tiễn. Những lưu ý khi thực hiện biện pháp - Quá trình KT tri thức phải phù hợp với trình độ nhận thức và khả năng tƣ duy của HS. - GV cần tổ chức các hoạt động cho HS tự KT tri thức mới về các quy tắc và các phƣơng pháp đã hình thành. Ví dụ minh họa: Dạy bài “Diện tích hình tam giác”[2] trên cơ sở vận dụng lý thuyết KT. Bƣớc 1: Hình thành quy tắc, phƣơng pháp GV tổ chức cho HS hoạt động nhƣ sau: Cho hai hình tam giác bằng nhau, GV yêu cầu HS cắt ghép hai hình tam giác đó thành hình chữ nhật. HS thực hành cắt ghép theo hình vẽ. 1 2 Đƣờng cắt 1 2 A D B C E H Trần Ngọc Bích và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 120(06): 183 – 188 186 GV giúp HS hình thành công thức tính diện tích hình tam giác qua hoạt động cắt ghép hình. Dựa vào kiến thức đã có, HS biết đƣợc công thức diện tích của hình chữ nhật ABCD là BC × AB = BC × EH. Từ đó, HS đƣa ra dự đoán của mình về công thức tính diện tích của hình tam giác. HS thảo luận nhóm và thống nhất dự đoán, đƣa ra ví dụ kiểm chứng để trình bày trƣớc lớp. Các nhóm tranh luận và thống nhất quy tắc. GV chốt lại quy tắc và công thức tính diện tích hình tam giác. Bƣớc 2: Thực hành sử dụng quy tắc, phƣơng pháp GV tổ chức cho HS thực hành sử dụng quy tắc, phƣơng pháp vào giải các bài tập trong sách giáo khoa dƣới dạng hoạt động cá nhân hoặc hoạt động nhóm. GV cũng có thể đƣa ra các mô hình của hình tam giác yêu cầu HS đo độ dài cạnh đáy, đƣờng cao và tính diện tích. Bƣớc 3: Củng cố quy tắc, phƣơng pháp GV tổ chức hoàn thiện và củng cố quy tắc cho HS thông qua bài tập khắc sâu kiến thức cho HS. Chẳng hạn: “Cho hình bình tam giác ABC, có chiều cao bằng cạnh đáy. Biết tổng độ dài của cạnh đáy và chiều cao là 35 m. Tính diện tích hình tam giác đó?” GV cho HS liên hệ thực tiễn cuộc sống, chẳng hạn: Tìm 3 đồ dùng có hình tam giác và tính diện tích 3 hình tam giác đó. Biện pháp 3: Tổ chức hoạt động KT trong DH giải toán Mục đích của biện pháp Biện pháp đƣợc xây dựng nhằm mục đích: Giúp HS biết tìm tòi lời giải và trình bày bài giải; Rèn luyện khả năng tƣ duy, khả năng lập luận cho HS. Cách thực hiện biện pháp Bƣớc 1: Tìm hiểu bài toán Bài toán gồm: Những dữ kiện là những cái đã cho, đã biết trong bài toán, những ẩn số là những cái chƣa biết và phải tìm. GV đặt câu hỏi giúp HS nắm đƣợc nội dung của bài toán. Bƣớc 2: Lập kế hoạch giải GV thiết kế các hoạt động giúp HS đƣa bài toán về dạng quen thuộc (quy lạ về quen) bằng cách huy động kiến thức, kĩ năng đã có trong kinh nghiệm để xem xét bài toán. Ngoài ra, GV có thể thiết kế hệ thống câu hỏi giúp HS hình thành cách giải bài toán, biết vận dụng các phƣơng pháp giải đã biết để thực hiện giải. Bƣớc 3: Trình bày bài giải Trình bày bài giải là quá trình hoàn thiện lời giải một bài toán. Sau khi tiến hành tìm hiểu nội dung bài toán, thực hiện lập kế hoạch giải toán, tiến đến việc thực hiện trình bày bài giải. Bƣớc 4: Kiểm tra và nghiên cứu lời giải Việc nghiên cứu lời giải còn cho phép HS nhìn lại xem đã xét đầy đủ các trƣờng hợp có thể xảy ra của bài toán hay chƣa, nhất là các bài toán có liên quan đến những đối tƣợng hay quan hệ có nhiều khả năng xảy ra. Bằng cách này dần luyện tập cho HS thói quen nhìn nhận vấn đề một cách khá toàn diện, theo nhiều khía cạnh, tránh phiến diện, hời hợt. GV có thể yêu cầu tìm cách giải khác cho bài toán để giúp phát triển tƣ duy, khả năng tìm tòi, khám phá của HS. Những lưu ý khi tiến hành biện pháp - GV tổ chức các hoạt động giúp HS suy nghĩ và tự tìm lời giải cho bài toán. - và phải phân loại đƣợc dạng của bài toán. Ví dụ minh họa Ví dụ: Lúc 6 giờ một xe ô tô đi từ A đến B với vận tốc là 50 km/giờ. Lúc 7 giờ 30 phút một xe du lịch đi từ B đến A với vận tốc là 65 km/giờ. Hỏi hai xe gặp nhau lúc mấy giờ? Biết quãng đường từ A đến B dài 420 km. Bƣớc 1: Tìm hiểu đề bài GV yêu cầu HS đọc kĩ bài toán và trả lời câu hỏi. Chẳng hạn: - Bài toán cho biết gì? (Lúc 6 giờ sáng một xe ô tô đi từ A đến B với vận tốc là 50 km/giờ. Lúc 7 giờ 30 phút một xe du lịch đi từ B đến A với vận tốc là 65 km/giờ. Quãng đƣờng từ A đến B dài 420 km). - Bài toán hỏi gì? (Hai xe gặp nhau lúc mấy giờ?) GV yêu cầu HS tóm tắt bài toán. Bƣớc 2: Lập kế hoạch giải GV đƣa ra hệ thống câu hỏi giúp HS xác định đƣợc kế hoạch giải bài toán. Chẳng hạn: Trần Ngọc Bích và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 120(06): 183 – 188 187 Giáo viên Học sinh + Xe ô tô xuất phát từ lúc mấy giờ? + Xe du lịch xuất phát từ lúc mấy giờ? + Thời gian xe ô tô đi từ A đến B trƣớc xe du lịch từ B đến A đã biết chƣa? + Muốn tìm thời gian xe ô tô đi từ A đến B trƣớc xe du lịch đi từ B đến A ta làm nhƣ thế nào? + Muốn biết trong thời gian 1 giờ 30 phút thì xe ô tô đi đƣợc bao nhiêu quãng đƣờng thì phải làm nhƣ thế nào? + Muốn biết khoảng cách giữa hai xe khi xe du lịch bắt đầu đi từ B ta làm nhƣ thế nào? +Muốn biết mỗi giờ cả hai xe đi đƣợc bao nhiêu quãng đƣờng ta phải làm nhƣ thế nào? + Thời gian để hai xe gặp nhau kể từ lúc 7 giờ 30 phút là bao lâu? + Bài toán thuộc dạng toán nào? 6 giờ 7 giờ 30 phút Chƣa biết 7giờ 30 phút – 6 giờ =1 giờ 30 phút Đổi 1 giờ 30 phút = giờ 50 × = 75 (km) 420 – 75 = 345 (km) 50 + 65 = 115 (km/h) 345 : 115 = 3 (giờ) Toán chuyển động đều Bƣớc 3: Trình bày lời giải HS nêu các bƣớc tính, có nhận xét, bổ sung. Sau đó yêu cầu HS trình bày bài giải. Bƣớc 4: Kiểm tra và nghiên cứu lời giải HS tự kiểm tra kết quả và rút ra kinh nghiệm. HS suy nghĩ và tự đặt câu hỏi: Cách giải nhƣ vậy đã ngắn gọn chƣa ? Có cách giải nào ngắn hơn không? Còn cách nào nữa không? KẾT LUẬN DH theo thuyết KT sẽ góp phần phát triển năng lực tìm tòi, khám phá, năng lực giải quyết vấn đề, tƣ duy toán học, cho HS. Tuy nhiên, trong DH, GV cần vận dụng linh hoạt các biện pháp sao cho đạt hiệu quả cao nhất, góp phần nâng cao chất lƣợng DH môn Toán trong trƣờng tiểu học. Các biện pháp đƣợc đề xuất là phù hợp với thực tiễn giáo dục, vận dụng đƣợc vào quá trình DH môn Toán ở các lớp cuối cấp tiểu học. TÀI LIỆU THAM KHẢO 1. Bộ Giáo dục và Đào tạo (2007), Toán 4, Nhà xuất bản Giáo dục. 2. Bộ Giáo dục và Đào tạo (2007), Toán 5, Nhà xuất bản Giáo dục. 3. Phạm Sỹ Nam (2013), Nâng cao hiệu quả dạy học một số khái niệm giải tích cho học sinh trung học phổ thông chuyên toán trên cơ sở vận dụng lý thuyết kiến tạo, Luận án Tiến sĩ Khoa học Giáo dục, Đại học Vinh. Trần Ngọc Bích và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 120(06): 183 – 188 188 SUMMARY RAISING EFFECTIVE TEACHING OF MATH IN FINAL GRADE IN PRIMARY SCHOOL BASED ON CONSTRUCT THEORY IMPLICATION Tran Ngoc Bich * , Tran Thi Ngoc Anh, Ngo Thi Duyen, Dinh Thi Huong, Pham Thi Nhung, Lai Thi Thu Thuy College of Education - TNU Applying the theory of construct in general teaching, teaching math in particular will contribute to develop the capacity to learn and improve teaching effectiveness. Through learning activities, pupils construct knowledge themselves under the direction and orientation of teachers. In particular, for the end of primary school classes (grades 4, 5), the training for pupils having creativity, collaboration capabilities, the ability to self-learning, self- study, ... is necessary. For this reason, we propose a number of measures to contribute to improving the effectiveness of teaching math at the end of primary school classes base on construct theory. Keyword: Primary EducationMathematics, Primary Education, teaching mathematics, construct, construct teaching Ngày nhận bài:12/5/2014; Ngày phản biện:26/5/2014; Ngày duyệt đăng: 09/6/2014 Phản biện khoa học: TS. Trần Việt Cường – Trường Đại học Sư phạm - ĐHTN * Tel: 0904 321939, Email: bichtransptn@gmail.com

Các file đính kèm theo tài liệu này:

  • pdfbrief_48383_52298_792015821229_9161_2046505.pdf
Tài liệu liên quan