Kĩ thuật viễn thông - Sampling of continuous – time signals
Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from its
Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
a) Integer Band Positioning
b) Arbitrary Band Positioning
45 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 843 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Kĩ thuật viễn thông - Sampling of continuous – time signals, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
SIGNAL PROCESSING
Sampling
of Continuous – Time Signals
Contents
I. Introduction
II. Discrete – Time Signals and Systems
III. The z – Transform
IV. Fourier Representation of Signals
V. Transform Analysis of LTI Systems
VI. Sampling of Continuous – Time Signals
VII.The Discrete Fourier Transform
VIII.Structures for Discrete – Time Systems
IX. Design of FIR Filters
X. Design of IIR Filters
XI. Random Signal Processing
sites.google.com/site/ncpdhbkhn 2
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from
its Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
sites.google.com/site/ncpdhbkhn 3
sites.google.com/site/ncpdhbkhn 4
Ideal Periodic Sampling of
Continuous – Time Signals (1)
Ideal analog – digital converter
Fs = 1/T
( )
c
x t [ ] ( )
c
x n x nT=
[ ] ( ) ( ),
c ct nT
x n x t x nT n
=
= = −∞ < < ∞
0 1 2 3 4 5 6
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
sites.google.com/site/ncpdhbkhn 5
Ideal Periodic Sampling of
Continuous – Time Signals (2)
CTFT 1
2
( ) ( ) ( ) ( )
j t j t
c c c c
X j x t e dt x t X j e d
pi
∞ ∞
− Ω Ω
−∞ −∞
Ω = ←→ = Ω Ω ∫ ∫
DTFT 1
2
( ) [ ] [ ] ( )
j j n j j n
n
X e x n e x n X e e d
pi
ω ω ω ω
pi
ω
pi
∞
−
−
=−∞
= ←→ =
∑ ∫
2 2 2
s
FT FT f
F
ω pi pi pi= Ω = = =
1 2
( )
j T
c
k
X e X j j k
T T
pi∞Ω
=−∞
= Ω −
∑
1 2
( )
j
c
k
X e X j j k
T T T
ω ω pi
∞
=−∞
= −
∑
1 2( ) [ ( )]j FT
c s
k
X e X j F kF
T
pi pi
∞
2
=−∞
= −∑
sites.google.com/site/ncpdhbkhn 6
Ideal Periodic Sampling of
Continuous – Time Signals (3)
1 2
( )
j T
c
k
X e X j j k
T T
pi∞Ω
=−∞
= Ω −
∑
0
( )cX jΩ
2 FpiΩ =
1
H−Ω HΩ
2H HFpiΩ =
0
( )
j TX e Ω
2 FpiΩ =H−Ω HΩ sΩs−Ω
1
T
s HΩ −Ω
Guard bandGuard band 2s sFpiΩ =2s HΩ > Ω
0
( )
j TX e Ω
2 FpiΩ =HΩ 2 sΩ2 s− Ω s−Ω
s
Ω
s HΩ −Ω
1
T
2
s s
FpiΩ =2s HΩ < Ω
sites.google.com/site/ncpdhbkhn 7
Ideal Periodic Sampling of
Continuous – Time Signals (4)
1 2
( )
j T
c
k
X e X j j k
T T
pi∞Ω
=−∞
= Ω −
∑
0
( )
j TX e Ω
[rad/s]ΩH−Ω HΩ 2
T
pi
s
−Ω
1
T
T
pi
Nyquist rate
s
F
2
s HΩ > Ω
2
sF
HF
2 HΩ
Sampling frequency
Folding
frequency
Nyquist frequency
sites.google.com/site/ncpdhbkhn 8
Ideal Periodic Sampling of
Continuous – Time Signals (5)
0
( )cX jΩ
2 FpiΩ =
1
H−Ω HΩ
2H HFpiΩ =
0
( )
j TX e Ω
2 FpiΩ =H−Ω HΩ sΩs−Ω
1
T
s HΩ −Ω
Guard bandGuard band 2s sFpiΩ =2s HΩ > Ω
2
0 2
( ), /
( )
, /
j T
s
c
s
TX e
X j
Ω Ω ≤ ΩΩ =
Ω > Ω
Let xc(t) be a continuous – time bandlimited signal with Fourier transform
0 for( )
c HX jΩ = Ω > Ω
Then xc(t) can be uniquely determined by its samples x[n] = xc(nT), where
n = 0, ±1, ±2, , if the sampling frequency Ωs satisfies the condition
2 2
s HT
piΩ = ≥ Ω
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal
from its Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
sites.google.com/site/ncpdhbkhn 9
sites.google.com/site/ncpdhbkhn 10
Reconstruction of a Bandlimited
Signal from its Samples (1)
( ) [ ] ( )
r r
n
x t x n g t nT
∞
=−∞
= −∑
t
nT 1( )n T+ 2( )n T+1( )n T−2( )n T−
( )
r
g t
[ ] ( )
r
x n g t nT−
( )
r
x t
( ) [ ] ( )
j nT
r r
n
X j x n G j e
∞
− Ω
=−∞
Ω = Ω∑
( ) [ ]
j nT
r
n
G j x n e
∞
− Ω
=−∞
= Ω ∑
( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
= ∑
( ) ( ) ( )
j T
r r
X j G j X e Ω→ Ω = Ω
sites.google.com/site/ncpdhbkhn 11
Reconstruction of a Bandlimited
Signal from its Samples (2)
( ) ( ) ( )
j T
r r
X j G j X e ΩΩ = Ω
0
( )cX jΩ
2 FpiΩ =
1
H−Ω HΩ
2H HFpiΩ =
0
( )
j TX e Ω
2 FpiΩ =H−Ω HΩ sΩs−Ω
1
T
s HΩ −Ω
Guard bandGuard band 2s sFpiΩ =2s HΩ > Ω
2
0 2
( ), /
( )
, /
j T
s
c
s
TX e
X j
Ω Ω ≤ ΩΩ =
Ω > Ω
2
If
0 2
, /
( ) ( )
, /
s
r Band Limited
s
T
G j G j
Ω ≤ ΩΩ = Ω = Ω > Ω
( ) ( )
r cX j X j→ Ω = Ω ( ) ( )r cx t x t→ =
sites.google.com/site/ncpdhbkhn 12
Reconstruction of a Bandlimited
Signal from its Samples (3)
2
0 2
, /
( ) ( )
, /
s
r BL
s
T
G j G j
Ω ≤ ΩΩ = Ω = Ω > Ω
sin( / )
( ) ( )
/
r BL
t Tg t g t
t T
pi
pi
→ = =
sin[ ( ) / ]
( ) [ ]
( ) /
r
n
t nT T
x t x n
t nT T
pi
pi
∞
=−∞
−
→ =
−
∑
( ) [ ] ( )
r r
n
x t x n g t nT
∞
=−∞
= −∑
( )BLG jΩ
T
0
T
pi
T
pi
−
Ω
-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
( )BLg t
t
T 2T 3T 4T 5T5T− 4T− 3T− 2T− T−
Ideal digital –
analog converter
Fs = 1/T
[ ]x n ( )rx t
sites.google.com/site/ncpdhbkhn 13
Reconstruction of a Bandlimited
Signal from its Samples (4)
sin[ ( ) / ]
( ) [ ]
( ) /
r
n
t nT T
x t x n
t nT T
pi
pi
∞
=−∞
−
=
−
∑
0
t
T 2T
0[ ]x
1[ ]x
( )
c
x t
1[ ] ( )
r
x g t T−
0[ ] ( )
r
x g t
sites.google.com/site/ncpdhbkhn 14
Reconstruction of a Bandlimited
Signal from its Samples (5)
( )cx t ( )cX jΩ
( )
j TX e Ω[ ]x n
S
a
m
p
l
i
n
g
R
e
c
o
n
s
t
r
u
c
t
i
o
n
A
liasing
L
o
w
pass
–
Filtering
Continuous – time
Fourier Transform Pairs
Discrete – time
Fourier Transform Pairs
( ) ( )
j t
c c
X j x t e dt∞ − Ω
−∞
Ω = ∫
1
2
( ) ( )
j t
c c
x t X j e d
pi
∞ Ω
−∞
= Ω Ω∫
( ) [ ]
j T j Tn
n
X e x n e
∞
Ω − Ω
=−∞
= ∑
1
2
/
/
[ ] ( )
T j T j Tn
T
x n TX e e d
pi
pipi
Ω Ω
−
= Ω∫
D
i
s
c
r
e
t
e
–
T
i
m
e
C
o
n
t
i
n
u
o
u
s
–
T
i
m
e
F
requ
ency
N
o
rm
alized F
requ
ency
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from
its Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
sites.google.com/site/ncpdhbkhn 15
sites.google.com/site/ncpdhbkhn 16
The Effect of Undersampling:
Aliasing (1)
Ideal digital –
analog converter
Fs = 1/T
[ ]x n ( )ry tIdeal analog –
digital converter
Fs = 1/T
( )
c
x t
2( )
c
X j Fpi 2( )j FTX e pi 2( )cY j Fpi
0 1 2 3 4 5 6
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
sites.google.com/site/ncpdhbkhn 17
The Effect of Undersampling:
Aliasing (2)Ex. 1
02( ) cos( )cx t F tpi=
0 0
2
( )
j F t j F t
c
e e
x t
pi pi2 − 2+
=
Spectrum of xc(t)
0
0
1
2 s
F F<
0F− 0F sFsF−
1
2
F
00F− 0F sFsF−
1
2T
F
0
0
1 2
( )
[ ( )]
j F T
c s
k
X e
X j F kF
T
pi
pi
2
∞
=−∞
= −∑
2
2
0 2
( )
, /
, /
BL
s
s
G j F
T F F
F F
pi
≤
=
>
2
sF
−
2
sF
T 2( )BLG j Fpi
Spectrum of xr(t)
0
0
1
2 s
F F<
0F− 0F sFsF−
1
2
F
No aliasing
02
02 2( ) ( ) ( )
j F T
r r
X j F G j F X e pipi pi=
sites.google.com/site/ncpdhbkhn 18
The Effect of Undersampling:
Aliasing (3)Ex. 1
02( ) cos( )cx t F tpi=
Spectrum of xc(t)
0
0
1
2 s s
F F F< <
0F− 0F sFsF−
1
2
F
00F− 0F sFsF−
1
2T
F
2
sF
−
2
sF
T 2( )BLG j Fpi
Spectrum of xr(t)
0
0
1
2 s
F F<
0( )sF F− − 0sF F− sFsF−
1
2
F
Aliasing
0 0
2
( )
j F t j F t
c
e e
x t
pi pi2 − 2+
=
0
0
1 2
( )
[ ( )]
j F T
c s
k
X e
X j F kF
T
pi
pi
2
∞
=−∞
= −∑
2
2
0 2
( )
, /
, /
BL
s
s
G j F
T F F
F F
pi
≤
=
>
02
02 2( ) ( ) ( )
j F T
r r
X j F G j F X e pipi pi= 02( ) cos[ ( ) ] ( )r s cx t F F t x tpi= − ≠
sites.google.com/site/ncpdhbkhn 19
The Effect of Undersampling:
Aliasing (4)Ex. 1
02( ) cos( )cx t F tpi=
0 2 2/ , /s sF F F F F= + ∆ ∆ ≤
2 2( ) cos[ ( / ) ]c sx t F F tpi→ = + ∆
02( ) cos[ ( ) ]r sx t F F tpi= −
0 2/apparent s sF F F F F= − = − ∆
2 2 2( ) cos ( ) cos[ ( / ) ]
r a s
x t F t F F tpi pi→ = = − ∆
sites.google.com/site/ncpdhbkhn 20
The Effect of Undersampling:
Aliasing (5)Ex. 2
( )
At
cx t e
−
=
2 2
2
0
( )c
AX j
A
A
Ω =
+Ω
>
[ ] ( )
( ) ,
AnT
c
n nAT
AT
x n x nT e
e a
a e
−
−
−
= =
= =
=
2
2
1
1 2
( ) [ ]
,
cos( )
j j n
n
s
X e x n e
a
a a
F
ω ω
ω
ω
∞
−
=−∞
=
−
=
− +
Ω
=
∑
-10 -8 -6 -4 -2 0 2 4 6 8 10
0
0.5
1
t
x
c
(
t
)
-10 -8 -6 -4 -2 0 2 4 6 8 10
0
0.2
0.4
Ω
X
c
(
j
Ω
)
-10 -8 -6 -4 -2 0 2 4 6 8 10
0
2
4
6
Ω
X
(
e
j
ω
)
-10 -8 -6 -4 -2 0 2 4 6 8 10
0
0.5
1
t
y
r
(
t
)
Sum
X
c
(jΩ) shifted 2pi to left & scaled 1/T
X
c
(jΩ) scaled 1/T
X
c
(jΩ) shifted 2pi to right & scaled 1/T
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from
its Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
sites.google.com/site/ncpdhbkhn 21
sites.google.com/site/ncpdhbkhn 22
Discrete – Time Processing of
Continuous – Time Signals (1)
Ideal DAC
Fs = 1/T
[ ]x n ( )ry tIdeal ADC
Fs = 1/T
( )cx t
( )cX jΩ ( )jX e ω ( )rY jΩ
LTI
Discrete – Time
System
h[n] H(ejω) ( )
jY e ω
[ ]y n
0
( )cX jΩ
Ω
1
2 HFpi− 2 HFpi
0
1 2
( )j T
c
k
X e X j k
T T
pi∞Ω
=−∞
= Ω−
∑
2
T
pi2
T
pi
−
1
T
Ω2 HFpi− 2 HFpi
0 t
( )
c
x t
0 T
[ ] ( ) ( )c ct nTx n x t x nT== =
2T t3T
sites.google.com/site/ncpdhbkhn 23
Discrete – Time Processing of
Continuous – Time Signals (2)
Ideal DAC
Fs = 1/T
[ ]x n ( )ry tIdeal ADC
Fs = 1/T
( )cx t
( )cX jΩ ( )jX e ω ( )rY jΩ
LTI
Discrete – Time
System
h[n] H(ejω) ( )
jY e ω
[ ]y n
0 1
[ ] [ ]* [ ]y n h n x n=
2 n3
0 1
[ ]x n
2 n3
⋯⋯
⋯⋯
0
( )
jX e ω
2pi2pi−
1
T
ω
Hω− Hω
( )
jH e ω
c
ω− cω
0
( ) ( ) ( )
j j jY e H e X eω ω ω=
2pi2pi−
1
T
ωcω− cω
sites.google.com/site/ncpdhbkhn 24
Discrete – Time Processing of
Continuous – Time Signals (3)
Ideal DAC
Fs = 1/T
[ ]x n ( )ry tIdeal ADC
Fs = 1/T
( )cx t
( )cX jΩ ( )jX e ω ( )rY jΩ
LTI
Discrete – Time
System
h[n] H(ejω) ( )
jY e ω
[ ]y n
0
( ) ( ) ( )
j T
r r
Y j G j Y e ΩΩ = Ω
1
Ωc−Ω cΩ
0 T
( ) [ ]
r
y nT y n=
2T t3T 0
( )
r
G jΩ
2
T
pi2
T
pi
−
1
T
Ωc−Ω cΩ
T
pi
−
T
pi
T ( )j TY e Ω
0
( )
r
y t
t
sites.google.com/site/ncpdhbkhn 25
Discrete – Time Processing of
Continuous – Time Signals (4)
Ideal DAC
Fs = 1/T
[ ]x n ( )ry tIdeal ADC
Fs = 1/T
( )cx t
( )cX jΩ ( )jX e ω ( )rY jΩ
LTI
Discrete – Time
System
h[n] H(ejω) ( )
jY e ω
[ ]y n
1 2
( )
j T
c
k
X e X j k
T T
pi∞Ω
=−∞
= Ω −
∑
( ) ( ) ( )
j j jY e H e X eω ω ω=
( ) ( ) ( )
j T
r r
Y j G j Y e ΩΩ = Ω
1 2
( ) ( ) ( )
j T
r BL c
k
Y j G j H e X j k
T T
pi∞Ω
=−∞
→ Ω = Ω Ω −
∑
0
( )
r
G jΩ
2
T
pi2
T
pi
−
1
T
Ωc−Ω cΩ
T
pi
−
T
pi
T ( )j TY e Ω
( )
jH e ω
0
( ) ( ), /
, /
j T
cH e X j T
T
pi
pi
Ω Ω Ω ≤
=
Ω >
sites.google.com/site/ncpdhbkhn 26
Discrete – Time Processing of
Continuous – Time Signals (5)
Ideal DAC
Fs = 1/T
[ ]x n ( )ry tIdeal ADC
Fs = 1/T
( )cx t
( )cX jΩ ( )jX e ω ( )rY jΩ
LTI
Discrete – Time
System
h[n] H(ejω) ( )
jY e ω
[ ]y n
0
( ) ( ), /
( )
, /
j T
c
r
H e X j T
Y j
T
pi
pi
Ω Ω Ω ≤Ω =
Ω >
0
( ), /
( )
, /
j T
effective
H e T
H j
T
pi
pi
Ω Ω ≤Ω = Ω >
( ) ( ) ( )
r effective cY j H j X j→ Ω = Ω Ω
sites.google.com/site/ncpdhbkhn 27
Discrete – Time Processing of
Continuous – Time Signals (6)Ex. 1
( )
( ) cc
dx ty t
dt
= ( ) ( )
c
Y j j X j→ Ω = Ω Ω ( )( )
( )
c
Y jH j j
X j
Ω
→ Ω = = Ω
Ω
0 otherwise
,
( )
,
H
c
j
H j Ω Ω ≤ ΩΩ =
2
( ) [ ] ( )s Hc ch t h n h nT
Ω = Ω
→ =
1 2
( ) ,
j
cT
k H
H e H j j k T
T T
ω
ω
pi pi∞
=Ω
=−∞
→ = Ω− = Ω ∑
2
1
( ) ( / ) ,
j
c
jH e H j T
T T
ω ωω ω pi→ = = ≤
2
2
0 01
2 0
,
[ ] cos( )
,
j n
njh n e d nT n
nT
pi ω
pi
ω
ω pi
pi −
=
→ = = ≠
∫
sites.google.com/site/ncpdhbkhn 28
Discrete – Time Processing of
Continuous – Time Signals (7)Ex. 2
2
2 22
( )
( )
( )
c n
c
c n n
Y sH s
X s s sζ
Ω
= =
+ Ω +Ω
( )22If 0 1 11( ) sin ( )ntnc nh t e t u tζζ ζζ − ΩΩ < < → = Ω − −
( )22 11[ ] ( ) sin ( )nnTnc nh n h nT e nT u nζ ζζ − ΩΩ → = = Ω − −
( ) ( )22 11 sin ( )n nTn ne T n u nζ ζζ − ΩΩ = Ω − −
( ) ( )22
0
1
1
( ) sinn
nT nn
n
n
H z e T n zζ ζζ
∞
− Ω −
=
Ω → = Ω −
−
∑
( )
( )
2 1
2 22 1 2
1
1 1 2 1
sin
cos
n
n n
T
n
n
T T
n
e T z
e T z e z
ζ
ζ ζ
ζ
ζ ζ
− Ω −
− Ω − Ω− −
Ω −Ω
= ×
−
− Ω − +
sites.google.com/site/ncpdhbkhn 29
Discrete – Time Processing of
Continuous – Time Signals (8)Ex. 2
2
2 22
( )
( )
( )
c n
c
c n n
Y sH s
X s s sζ
Ω
= =
+ Ω +Ω
( )22If 0 1 11( ) sin ( )ntnc nh t e t u tζζ ζζ − ΩΩ < < → = Ω − −
( ) ( )22 11[ ] sin ( )n nTn nh n e T n u nζ ζζ − ΩΩ = Ω − −
( )
( )
2 1
2 22 1 2
1
1 1 2 1
sin
( )
cos
n
n n
T
n
n
T T
n
e T z
H z
e T z e z
ζ
ζ ζ
ζ
ζ ζ
− Ω −
− Ω − Ω− −
Ω −Ω
= ×
−
− Ω − +
( )
( )
2
2
22
1 1
1
2 1 1 2
[ ] sin [ ]
cos [ ] [ ]
n
n n
Tn
n
T T
n
y n e T x n
e T y n e y n
ζ
ζ ζ
ζζ
ζ
− Ω
− Ω − Ω
Ω
→ = Ω − −
−
+ Ω − − − −
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from its
Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
a) Analog – to – Digital Conversion
b) Digital – to – Analog Conversion
6. Sampling of Bandpass Signals
sites.google.com/site/ncpdhbkhn 30
sites.google.com/site/ncpdhbkhn 31
Practical Sampling
and Reconstruction
A/D
converter
Fs = 1/T
( )ax t [ ]qx nAntialiasing
filter
Ha(jΩ)
( )cx t Sample
and hold
Fs = 1/T
Discrete – time
system
D/A
converter
Fs = 1/T( )SHy t [ ]y n
Reconstruction
filter
Ha(jΩ)( )ry t
Sample
and hold
Fs = 1/T
Practical approximation of ideal A/D converter
Practical approximation of ideal D/A converter
sites.google.com/site/ncpdhbkhn 32
Analog – to – Digital Conversion
(1)
A/D
converter
Fs = 1/T
( )ax t [ ]qx nAntialiasing
filter
Ha(jΩ)
( )cx t Sample
and hold
Fs = 1/T
Practical approximation of ideal A/D converter
( )inx t ( )outx tR
C
Hold
Sample
0
t
( )inx t
( )
outx t
sites.google.com/site/ncpdhbkhn 33
Analog – to – Digital Conversion
(2)
A/D
converter
Fs = 1/T
( )ax t [ ]qx nAntialiasing
filter
Ha(jΩ)
( )cx t Sample
and hold
Fs = 1/T
Practical approximation of ideal A/D converter
0
t
( )inx t
( )
outx t
∆
011
010
001
000
111
110
101
100
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from its
Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
a) Analog – to – Digital Conversion
b) Digital – to – Analog Conversion
6. Sampling of Bandpass Signals
sites.google.com/site/ncpdhbkhn 34
sites.google.com/site/ncpdhbkhn 35
Digital – to – Analog Conversion
(1)
( ) [ ] ( )SH q SH
n
x t x n g t nT
∞
=−∞
= −∑
( ) [ ] ( )
r r
n
x t x n g t nT
∞
=−∞
= −∑
D/A
converter
Fs = 1/T( )SHy t [ ]y n
Reconstruction
filter
Ha(jΩ)( )ry t
Sample
and hold
Fs = 1/T
Practical approximation of ideal D/A converter
21 0 2 2
0 otherwise
/
, sin( / )
( ) ( )
,
CTFT j T
SH SH
t T Tg t G j e− Ω≤ ≤ Ω= ←→ Ω = Ω
sin( / )
( ) ( )
/
r BL
t Tg t g t
t T
pi
pi
= =
sites.google.com/site/ncpdhbkhn 36
Digital – to – Analog Conversion
(2)
21 0 2 2
0 otherwise
/
, sin( / )
( ) ( )
,
CTFT j T
SH SH
t T Tg t G j e− Ω≤ ≤ Ω= ←→ Ω = Ω
-5 0 5
0
0.5
1
1.5
2
Ω
|
G
S
H
(
j
Ω
)
|
-5 0 5
-4
-2
0
2
4
Ω
∠
G
S
H
(
j
Ω
)
2
T
pi2
T
pi
−
2
T
pi
−
2
T
pi
Ideal bandlimited
interpolator GBL(jΩ)
T
pi
T
pi
−
pi
pi−
T
( ) ( ) ( )SH r BLG F H F G F=
sites.google.com/site/ncpdhbkhn 37
Digital – to – Analog Conversion
(3)
21 0 2 2
0 otherwise
/
, sin( / )
( ) ( )
,
CTFT j T
SH SH
t T Tg t G j e− Ω≤ ≤ Ω= ←→ Ω = Ω
( ) ( ) ( )SH r BLG F H F G F=
22
2
0 otherwise
//
, /
( ) sin( / )
,
T
r
T
e T
H j T pi
ΩΩ Ω <Ω = Ω
-5 0 5
0
1
2
Ω
|
G
S
H
(
j
Ω
)
|
-5 0 5
0
1
2
Ω
|
H
r
(
j
Ω
)
|
-5 0 5
0
2
4
Ω
|
G
S
H
(
j
Ω
)
H
r
(
j
Ω
)
|
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from its
Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
a) Integer Band Positioning
b) Arbitrary Band Positioning
sites.google.com/site/ncpdhbkhn 38
sites.google.com/site/ncpdhbkhn 39
Integer Band Positioning (1)
0
2( )cX j Fpi1
HF− HF
3( )H H LF F F= −
FLFLF−
PN
0 2
0 2
,
( )
,
L L
c
H H
F
X j
F
pi
pi
Ω ≤Ω =Ω =
Ω ≥Ω =
2
H L
H LB F F pi
Ω −Ω
= − =
0
2( )j FTX e pi1
T
2sF B=
FLF−HF− LF HF
N P 1P1N 2N 3N
0
2( )
r
G j Fpi
T
FLF−HF− LF HF
( )H H LF K F F KB= − =
2 1 2( ) [ ( )]j FT c s
k
X e X j F kF
T
pi pi
∞
=−∞
= −∑
2
2
sin( )
( ) cos( ), H L
r c c
Bt F Fg t F t F
Bt
pi
pi
pi
−
= =
( ) ( ) ( )c c r
n
x t x nT g t nT
∞
=−∞
= −∑
sites.google.com/site/ncpdhbkhn 40
Integer Band Positioning (2)
0
2( )cX j Fpi1
HF− HF
4( )H H LF F F= −
FLFLF−
PN
0
2( )
r
G j Fpi
T
FLF−HF− LF HF
0
2( )j FTX e pi1
T
2sF B=
FLF−HF− LF HF
N P
1N 2N 3N 4N 1P
Sampling of
Continous – Time Signals
1. Ideal Periodic Sampling of Continous – Time
Signals
2. Reconstruction of a Bandlimited Signal from its
Samples
3. The Effect of Undersampling: Aliasing
4. Discrete – Time Processing of Continuous –
Time Signals
5. Practical Sampling and Reconstruction
6. Sampling of Bandpass Signals
a) Integer Band Positioning
b) Arbitrary Band Positioning
sites.google.com/site/ncpdhbkhn 41
sites.google.com/site/ncpdhbkhn 42
Arbitrary Band Positioning (1)
0
2( )cX j Fpi1
HF− FLF− HFLF
PN
0
2( )j FTX e pi1
T
2sF B≥
FHFLF
P
thk
1PN N
1( )thk −
1( )
s Lk F F− − s HkF F−
2 2
1
H L
s
F FF
k k
→ ≤ ≤
−
2 12H Hs
F FF B
k B k
→ ≥ = ×
2 1 Hs
FF B k
B
≥ → ≤ ≤
2 2 1 2 2
1
; min /
/
sH H H H H
s
H
FF F F F FF B
k B B k B B B F B
× ≤ ≤ − = =
−
1( )
s L L
s H H
k F F F
kF F F
− − ≤
− ≥
sites.google.com/site/ncpdhbkhn 43
Arbitrary Band Positioning (2)
2 2 1
1
sH HFF F
k B B k B
× ≤ ≤ −
−
1 2 3 4 5 6 7 8 9 10
2
2.5
3
3.5
4
4.5
5
5.5
6
FH/B
F
s
/
B
k = 1 k = 2 k = 3
k = 4
sites.google.com/site/ncpdhbkhn 44
Arbitrary Band Positioning (3)
Ex.
Given a bandpass signal with FL = 1.5kHz and FH = 2.5kHz, find the appropriate Fs?
2 5 1 5
1
. .
kHz
H LB F F= −
= −
=
2
2 52
2 5 1
2 52
2
2 5
min
/
.
. /
.
. kHz
H
s
H
FF
F B
=
=
=
=
2 5 2 5
1
.
.H
F
B
= =
2 5 2 5
1
.
.S
F
B
= =
1 2 3 4 5 6 7 8 9 10
2
2.5
3
3.5
4
4.5
5
5.5
6
FH/B
F
s
/
B
k = 1 k = 2 k = 3
k = 4
sites.google.com/site/ncpdhbkhn 45
Arbitrary Band Positioning (4)
Ex.
Given a bandpass signal with FL = 1.5kHz and FH = 2.5kHz, find the appropriate Fs?
2 5 2 5. ; .sH FF
B B
= =
1 2 3 4 5 6 7 8 9 10
2
2.5
3
3.5
4
4.5
5
5.5
6
FH/B
F
s
/
B
k = 1 k = 2 k = 3
k = 42k =
2 2
1
H L
s
F FF
k k
≤ ≤
−
2 2 5 2 1 5
2 2 1s
F× ×≤ ≤
−
. .
2 5 3
s
F≤ ≤. kHz kHz
Các file đính kèm theo tài liệu này:
- sampling_2014mk_4923.pdf