Grid retaining control of wind power plants system using doubly-Fed induction generators by passivity -based method - Dang Danh Hoang
CONCLUSION
- The paper has given a new control algorithm
adding to [3].
- Illustrative result showed that rotor current
controller had controlled sections: ird, irq
follow up set points ird*, irq* when grid droped
out (symmetrics) leading to voltage drop out
from 10% to 50% of grid voltage and rotor
angle frequency when curent controller PBC
is fluctuative then working stability. When
the failure finished, system return to stable
(figure 7, 8, 9, 11, 12, 13, 14). The illustrative
showed the stability of PBC controller when
error occurs. Addition, it identicates the
guaranteed control quality of sy
6 trang |
Chia sẻ: thucuc2301 | Lượt xem: 477 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Grid retaining control of wind power plants system using doubly-Fed induction generators by passivity -based method - Dang Danh Hoang, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Cao Tiến Huỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 128(14): 149 - 154
156
GRID RETAINING CONTROL OF WIND POWER PLANTS SYSTEM USING
DOUBLY-FED INDUCTION GENERATORS BY PASSIVITY -BASED METHOD
Dang Danh Hoang*
College of Technology - TNU
SUMMARY
The surveying and evaluation of the quality of control method for wind power systems using
Doubly-Fed Induction Generators (DFIG) is a highly important signification.
A new designing methodology for the passivity-based nonlinear controller is applied to gain some
results which are described in this paper as can be seen, to control the Doubly-Fed Induction
Generators, to maintain grid retaining of system in syschronical fault case which lead to drop a
part of grid voltage
Key word: Passivity - based control , wind power, grid fault.
Notation
Notation Unit Meaning
R(x) Attenuation matrix
J(x) Matrix links blocks in
system structure.
G(x) Matrix represents input,
output relation.
Lr H Rotor’s induction.
Tr, Ts s Timing constant of rotor and
stator
r, rad/s Rotor’s radian frequency,
mechanical angular speed of
rotor
sd, sq Wb Components d and q of
magnetic flux stator
rd, rq Wb Components d and q of
magnetic flux rotor
Summing dissipated co-
efficient.
Lm H Mutual inductance between
stator and rotor
Abbreviation
DFIG Doubly-Fed Induction Generators
PĐSG Wind power generators.
EL Euler - Lagrange
PBC Passive based control
NL Energy
PREFACE*
Recently, in our country as well as in over the
world, controlling Doubly-Fed Induction
Generators in Wind power generators system
(PĐSG) is a considerative problem. Now,
there are some researchers who using a few
control methods, such as: accurate
* Tel: 0912 847588
linearazation[9], backstepping[1] and had
gotten positive results. We ourselves also
published searching projects in this field [2,
3]. This article introduces achievement of
passivity-based control method to control
Doubly-Fed Induction Generators in the case
of grid failure. In details:
Control to ensure wind power generators
using Double-Fed Three-phrases Induction
Generators in grid tracking when symmetrical
grid failure happened leading to drop apart of
grid voltage avoiding grid clumble if the
generators cut out of grid simultaneously.
There will be established systems containing
many wind power generators, therefore when
the errors happen, generators all cut out of
grid easily occurs grid clumble. Thus,
controling grid tracking is very important when
the errors occur. This study itself focused on
dealing the problem mentioned above.
PASSIVITY-BASED CONTROL METHOD
Fundamental theory
Passivity Based Control - PBC is controlling
algorithm which its principle based on
passitive characteristic of objects (open-system)
target to change closed-system being passive
with expective energy storage function.
Consider a system which has summing
function of energy storage H(x,x) (positive
difining), input turning vector u, output y and
ignore disturbance. So that, delivery speed of
Đặng Danh Hoằng Tạp chí KHOA HỌC & CÔNG NGHỆ 128(14): 155 - 160
157
energy for system will be yTu. That could be
passivity if:
T
T
0
energy storage
energy input
( ) (0)dt H T Hy u (1)
where x = (x1,x2,..,xn)T and x is state vector
and state derivative vector of system.
Means that : u y defining a passive
relation using summing energy storage
function ( , )x xH .
If u = 0 then 0H , system’s energy is
invariable, so that it’s stable following
Lyapunov, H is considered as Lyapunov
function.
If the system is tight passive then it could be
asymptotical stability Lyapunov at origin
cause of H is negative determination.
Control System Structure
Arccoding to [2, 4, 6], the system contains 2
basic control sections, as figure 1.
Control from generators side using Doubly -
fed induction machines - DFIG.
Control from grid side
Figure 1. Structure diagram of generators system
using DFIG
NLPL: Grid side inverter,
NLMP: Generators side inverter,
MĐC: On/Off switch,
IE: Speed measurer.
Applied to design controller
Design Rotor’s current controller in
generator side
To apply this method, we divide gerenator’s
rotor into two sections: electrical dynamics
(energy function He, NL) and mechanical
dynamics (energy function Hm) - Hình 2.
Figure 2. Analysis DFIG to dynamic of electric
and mechanic
Figure 3. Structure principle diagram of
controlling MĐKĐBNK by using PBC
Then, by putting dynamic equations into EL
equation, so the equations turn to passivity
[11, 12].
From firgure 2, we construct pricipal diagram
of control structure following passivity based
method as showed in figure 3 and for
specifically in figure 4.
Figure 4. Structure of current vector controller
PBC including 2 functional blocks
Using the method taking controller into
electrical dynamic system and interaction of
He
Hm
ir
m
M
mW
-
-
urPBC
PBC
IR
e
H
m
H
(-)
(-)
(-)
mW
(sức gió)
mG
PBC
r
u ri ri
PBC
I
R : Current controller
using PBC
Transformer
3~
3
~
=
Controller
IE
MĐ
C
u
N
us
DFIG
UDC
ir
is
n
iN
NLPL NLMP
=
3
~
MĐKĐBNK
(-)
(-)
e
H
m
H
(-) mW
(wind power)
mG
PBC
r
u
*
r
i
Calculate ur
*
based on
function NL
expectation He
*
Calculate
attenuation
coefficients
D()
us r s
(-)
*
r
u
( )D ri
Controller PBC
I
R
r
i
r
i
Đặng Danh Hoằng Tạp chí KHOA HỌC & CÔNG NGHỆ 128(14): 155 - 160
158
mechanical dynamic system, so that closed-
system is sastified EL equation, gotten:
( )( - )PBC D * *r r r ru u i i (2)
Where:
2
2 0 0
4
m
r
L
D( ) d , R ,d (3)
As in [1, 4] system of equations descirbe rotor
current model of (DFIG) after separated in
coordinate axes dq as:
'
'
'
'
1 1 1 1 1
( ) .
1 1 1
. .
1 1 1 1 1
( )
1 1 1
.
rd
rd r rq sd
r s s
rdsq sd
r m
rq
rq r rd sq
r s s
rq sqsd
r m
di
i i
dt T T T
u u
L L
di
i i
dt T T T
u u
L L
(4)
To establish control problem, named ir is
control variable, with expective value is ir* -
taking from moment controller mG and cos.
Passivity based controller EL is established
following (2). Control signal is determined:
* *
* *
( ).( )
( ).( )
rd
rd
rq
rq
PBC
rd rd
PBC
rq rq
u u D i i
u u D i i
(5)
Where:
;
rd rq
PBC PBCu u : Voltage from PBC controller
created (following d and q).
urd*; urq*: expecting rotor voltage of generator
(following d and q), defined by (4).
Figure 5. Generator control system DFIG in Wind Power Generator (PĐSG) system
using Passivity – Based Controller
From DC
intermediate circuit
Controller DCMM
Grid
Đặng Danh Hoằng Tạp chí KHOA HỌC & CÔNG NGHỆ 128(14): 155 - 160
159
1450 n_ref
n
mL
Turbine
Sine Wave
Signal 1
Signal Builder
Tr
Tm
Source
K5
Sy nch
Ti
Fehler
Udc
Unetz
Ustator
IStator
Enc
Inetz
Irotor
I_kurzschluss
I_haupt
Mo hinh MF
[n]
u_dc
u_netz
u_stator
i_stator
enc
i_netz
i_rotor
I_phu
I_chinh
theta_r
ird*
irq*
omega_n
indq_ist
undq_ist
theta_n
udc_ist
irdq_ist
isdq_ist
usdq_ist
theta_s
omega_s
omega_m
Chuan_hoa
k_5
Rec
Inv
Sy nchout
K5
Cac tin hieu dieu kien
omega_n
indq_ist
undq_ist
theta_n
udc_ist
IF
Tabc
DC Check
Bo dieu khien phia luoi
Sy nch
IF
udc_ist
theta_n
undq_ist
omega_n
irdq_ist
isdq_ist
usdq_ist
theta_s
omega_s
omega_m
Tabc
theta_r
ird*
irq*1
Bo dieu khien MF
By using the method mentioned above, we
have rotor current controller following 2
sections:
*
*
* * *
* *
1 1
( )
1
. ( ' ' )
1
. ( ).( )
rdPBC
rd r r rd
r s
r r rq r sd s sq
s
r sd rd rd
m
di
u L L i
dt T T
L i L T
T
L u D i i
L
(6)
*
*
* * *
* *
1 1
( )
1
( ' ' )
1
. ( ).( )
rq
rq rq
rd sq sd
sq
PBC
r r
r s
r r r s
s
r rq rq
m
di
u L L i
dt T T
L i L T
T
L u D i i
L
(7)
As the result of passive based current
controller, we see that it guaranteed the
chanel seperation using compensated cross-
linking by 2 components: r.ird* and r.irq*
as well as compensating others parameters
such as: grid voltage, stator flux, rotor speed
and involve integral composition to reduce
static errors. From (6), (7) and figure 4, we
determine by using general control structure
in generator side as figure 5 showed.
Design controller in grid side
Due to grid side requirement is stable control
the voltage uDC providing for middle DC
circuit. Therefore, this journal also gives a
simple design method called normally linear
Dead – Beat method [1, 3, 4].
Diagram and illustrative result using Matlab
– Simulink – Plecs
Illustrate the generator having parameter
below:
Pđm = 1,1 KW Uđmr = 345 V Rr = 3.7
Uđms =220/380(/) nđm =950 V/ph Ls = 0.013H
fđm = 50 Hz Rs =4.2 Ls = 0.0089H
zp = 3 Cosđm =0.657 Lm = 0,34H
J = 0.064Kgm2 Iđm = 3,5A Identification:
VM Vietnam
Figure 6. Illustrative diagram of wind power
generator system using DFIG
In case, voltage droping (symmetrics)
decreasing 10%, n = nđm =950 rpm; Applying
control step moment from m=-3Nm to 0Nm
and cos step down cos = 0.7 to 0.436 (sin
= 0.9) for grid tracking:
Figure 7. Grid voltage when drop out 10%
Figure 8. Moment when grid drops out 10%
Figure 9. Cos when grid drops out 10%
Đặng Danh Hoằng Tạp chí KHOA HỌC & CÔNG NGHỆ 128(14): 155 - 160
160
Figure 10. Rotor current when grid drops 10%
In case, voltage droping (symmetrics)
decreasing 50%, n = nđm =950rpm; Applying
control step moment from m=-5Nm to 0Nm
and cos step down cos = 0.7 to 0.436 (sin
= 0.9) for grid tracking:
Figure 11. Grid voltage when drop out 50%
Figure 12. Moment when grid drops out 50%
Figure 13. Cos when grid drops out 50%
Figure 14. Rotor current when grid drops 50%
CONCLUSION
- The paper has given a new control algorithm
adding to [3].
- Illustrative result showed that rotor current
controller had controlled sections: ird, irq
follow up set points ird*, irq* when grid droped
out (symmetrics) leading to voltage drop out
from 10% to 50% of grid voltage and rotor
angle frequency when curent controller PBC
is fluctuative then working stability. When
the failure finished, system return to stable
(figure 7, 8, 9, 11, 12, 13, 14). The illustrative
showed the stability of PBC controller when
error occurs. Addition, it identicates the
guaranteed control quality of system.
REFERENCES
1. Cao Xuân Tuyển: "Tổng hợp các thuật toán phi
tuyến trên cơ sở phương pháp backstepping để
điều khiển máy điện dị bộ nguồn kép trong hệ
thống máy phát điện sức gió", Luận án tiến sĩ kỹ
thuật, Đại học Bách khoa Hà nội, 2008.
2. Đặng Danh Hoằng: "Hoà đồng bộ máy phát
điện lên lưới bằng phương pháp điều khiển
passivity–based", Tạp chí KHCN đại học Thái
nguyên, 2010
3. Đặng Danh Hoằng, Nguyễn Phùng Quang,
"Thiết kế bộ điều khiển dựa trên thụ động
"Passivity - based" để điều khiển máy phát điện
không đồng bộ nguồn kép", Tạp chí KHCN các
trường đại học kỹ thuật, số 76, năm 2010.
4. Ng.Ph.Quang, A. Dittrich (2008) Vector
Control of Three - Phase AC Machines - System
Development in the Practice. Springer Heidelberg
Berlin..
5. Ng.Ph.Quang: “Matlab Simulink dành cho kỹ
sư điều khiển tự động”. Nxb Khoa học và Kỹ thuật,
Hà nội, 2004.
Đặng Danh Hoằng Tạp chí KHOA HỌC & CÔNG NGHỆ 128(14): 155 - 160
161
6. Ng.Ph.Quang: “Điều khiển tự động truyền động
điện xoay chiều ba pha”. Nxb GD, Hà nội, 1996.
7. N.D.Phước, P.X.Minh, H.T.Trung: Lý thuyết
điều khiển phi tuyến. Nxb Khoa học và Kỹ thuật,
Hà nội, 2003.
8. Arnau D`oria-Cerezo, "Modeling, simulation
and control of a doubly-fed induction machine
controlled by a back-to-back converter" PhD
Thesis, 2006.
9. Lan, Ph.Ng: "Linear and nonlinear control
approach of doubly - fed induction generator in
wind power generation", P.h.D thesis, TU-
Dresden, 2006.
10. Levent U.gödere, Marwan A. Simaan, Charles
W. Brice: “Passivity – Based Control of Saturated
Induction Motors”, 1997, IEEE.
11. R.Ortega, A.Loria, P.J.Nicklasson, H.Sira-
Ramírez: “Passivity-based Control of Euler
Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications”. Springer-
Verlay, London-Berlin-Heidelberg, 1998.
TÓM TẮT
ĐIỀU KHIỂN BÁM LƯỚI HỆ THỐNG PHÁT ĐIỆN SỨC GIÓ
SỬ DỤNG MÁY PHÁT KHÔNG ĐỒNG BỘ NGUỒN KÉP
BẰNG PHƯƠNG PHÁP TỰA THEO THỤ ĐỘNG
Đặng Danh Hoằng*
Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên
Việc khảo sát, đánh giá chất lượng phương pháp điều khiển cho hệ thống máy phát điện sức gió sử
dụng máy điện không đồng bộ nguồn kép có một ý nghĩa hết sức quan trọng.
Bài báo trình bày kết quả nghiên cứu áp dụng phương pháp thiết kế bộ điều khiển phi tuyến tựa
theo thụ động (passivity – based) để điều khiển máy phát điện không đồng bộ nguồn kép, đảm bảo
bám lưới khi xảy ra lỗi lưới đối xứng ở xa gây sập một phần điện áp lưới.
Từ khoá: Điều khiển tựa theo thụ động, sức gió, lỗi lưới
Ngày nhận bài:18/9/2014; Ngày phản biện:05/11/2014; Ngày duyệt đăng: 25/11/2014
Phản biện khoa học: PGS.TS Lại Khắc Lãi – Đại học Thái Nguyên
* Tel: 0912 847588
Các file đính kèm theo tài liệu này:
- brief_48374_52290_69201521581524_5555_2046498.pdf