Đại số tuyến tính - Chương 3: Hệ phương trình tuyến tính

Giả sử A là ma trận của hệ thuần nhất có 4 phương trình và 8 ẩn, giả sử có 5 ẩn tự do. Tìm r(A)? Ví dụ Giải thích vì sao hệ phương trình thuần nhất có m phương trình, n ẩn với m < n luôn luôn có vô số nghiệm. Ví dụ

pdf30 trang | Chia sẻ: nguyenlam99 | Lượt xem: 1038 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Đại số tuyến tính - Chương 3: Hệ phương trình tuyến tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trường Đại học Bách khoa tp. Hồ Chí Minh Bộ môn Toán Ứng dụng --------------------------------------------------------------- Đại số tuyến tính Chương 3: Hệ phương trình tuyến tính Giảng viên Ts. Đặng Văn Vinh (9/2007) www.tanbachkhoa.edu.vn Nội dung --------------------------------------------------------------------------------------------------------------------------- I – Hệ phương trình tuyến tính tổng quát II – Hệ phương trình tuyến tính thuần nhất I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- a11, a12, , amn được gọi là hệ số của hệ phương trình. 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 n n n n m m mn m m a x a x a x b a x a x a x b a x a x a x b                               Hệ phương trình tuyến tính gồm m phương trình, n ẩn có dạng: Định nghĩa hệ phương trình tuyến tính. b1, b2, , bm được gọi là hệ số tự do của hệ phương trình. I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Nghiệm của hệ là một bộ n số c1, c2, , cm sao cho khi thay vào từng phương trình của hệ ta được những đẳng thức đúng. Hệ phương trình tuyến tính được gọi là thuần nhất nếu tất cả các hệ số tự do b1, b2, , bm đều bằng 0. Định nghĩa hệ thuần nhất. Hệ phương trình tuyến tính được gọi là không thuần nhất nếu ít nhất một trong các hệ số tự do b1, b2, , bm khác 0. Định nghĩa hệ không thuần nhất. I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Hệ tương thích Hệ không tương thích Một hệ phương trình tuyến tính có thể: 1. vô nghiệm, 2. có duy nhất một nghiệm 3. Có vô số nghiệm Hai hệ phương trình được gọi là tương đương nếu chúng cùng chung một tập nghiệm. Để giải hệ phương trình ta dùng các phép biến đổi hệ về hệ tương đương, mà hệ này giải đơn giản hơn. I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Có 3 phép biến đổi tương đương đối với hệ phương trình . Một phép biến đổi được gọi là tương đương nếu biến một hệ phương trình về một hệ tương đương. Định nghĩa phép biến đổi tương đương 3. Đổi chổ hai phương trình. 1. Nhân hai vế của phương trình với một số khác không. 2. Cộng vào một phương trình một phương trình khác đã được nhân với một số tùy ý. Chú ý: Chúng ta có thể kiểm tra dễ dàng rằng các phép biến đổi trên là các phép biến đổi tương đương. I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- 1 2 1 3 2h h h h      0 3 3 3 3 3 x y y z y z           2 3 h h  0 3 3 3 4 0 x y y z z          Phương trình có nghiệm duy nhất: x = 1; y = -1; z = 0 Giải hệ phương trình: 0 2 3 3 2 3 x y x y z x y z           Ví dụ I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- 1 1 0 2 1 3 1 2 1          Ma trận hệ số: Ma trận mở rộng: 1 1 0 0 2 1 3 3 1 2 1 3           I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- 1 2 1 3 2h h h h      2 3 h h  1 1 0 0 2 1 3 3 1 2 1 3           1 1 0 0 0 3 3 3 0 3 1 3           1 1 0 0 0 3 3 3 0 0 4 0          I. Hệ phương trình tuyến tính tổng quát Ẩn cơ sở là ẩn tương ứng với cột chứa phần tử cơ sở. Ẩn tự do là tương ứng với cột không có phần tử cơ sở. Định nghĩa ẩn cơ sở và ẩn tự do. 1 1 1 2 1 2 2 3 5 6 3 3 4 1 1          BĐSC HÀNG 1 1 1 2 1 0 0 1 1 4 0 0 0 6 8           x1, x3, x4: là các ẩn cơ sở x2: ẩn tự do Nếu , thì hệ AX = b có nghiệm. ( | ) ( )r A b r A Nếu , thì hệ AX = b vô nghiệm. ( | ) ( )r A b r A I. Hệ phương trình tuyến tính tổng quát Nếu = số ẩn, thì hệ AX = b có nghiệm duy nhất. ( | ) ( )r A b r A Nếu < s, thì hệ AX = b có vô số nghiệm. ( | ) ( )r A b r A Định lý Kronecker Capelli Nếu hai ma trận mở rộng của hai hệ phương trình tuyến tính tương đương hàng với nhau thì hai hệ đó tương đương. I. Hệ phương trình tuyến tính tổng quát -------------------------------------------------------------------------------------------------- 2. Dùng biến đổi sơ cấp đối với hàng đưa ma trận mở rộng về ma trận dạng bậc thang. Kiểm tra hệ có nghiệm hay không 3. Viết hệ phương trình tương ứng với ma trận bậc thang 4. Giải hệ phương trình ngược từ dưới lên, tìm ẩn xn, sau đó xn-1, ., x1. Sử dụng biến đổi sơ cấp đối với hàng để giải hệ 1. Lập ra ma trận mở rộng ( | )A A b I. Hệ phương trình tuyến tính tổng quát ---------------------------------------------------------------------------------------------------------------------- Giải các hệ phương trình sau đây với các ma trận mở rộng cho trước. 1 5 2 6 . 0 4 7 2 , 0 0 5 0 a          1 1 1 3 . 0 1 2 4 , 0 0 0 5 b          1 1 1 0 . 0 1 2 5 , 0 0 0 0 c          1 1 1 0 . 0 3 1 0 . 0 0 0 0 c          Ví dụ I. Hệ phương trình tuyến tính tổng quát -------------------------------------------------------------------------------------------------------------------- Ví dụ 5 2 1 4 6 3 3 9 x y z x y z x y z              Giải hệ phương trình: I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- 3 3 5 9 2 2 3 3 y z x y z x y z            Ví dụ Giải hệ phương trình I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- ẩn cơ sở: 521 ,, xxx ẩn tự do: 43, xx Nghiệm tổng quát: 1 2 3 4 5 24 2 3 7 2 2 4 x x x x x                      Tìm nghiệm tổng quát của hệ phương trình Ví dụ 2 3 4 5 1 2 3 4 5 1 2 3 4 5 3 6 6 4 5 3 7 8 5 8 9 3 9 12 9 6 15 x x x x x x x x x x x x x x                  I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Tìm nghiệm tổng quát của hệ phương trình biết ma trân mở rộng Ví dụ 1 1 1 1 2 3 4 1 3 4 2 1          I. Hệ phương trình tuyến tính tổng quát ----------------------------------------------------------------------------------------------------------- --- Tìm nghiệm tổng quát của hệ phương trình biết ma trận mở rộng Ví dụ 1 1 2 0 2 1 5 0 3 4 5 0          I. Hệ phương trình tuyến tính tổng quát ----------------------------------------------------------------------------------------------------------- -- Tìm nghiệm tổng quát của hệ phương trình biết ma trận mở rộng Ví dụ 1 1 1 1 2 2 1 3 0 1 3 4 2 2 5 2 3 1 1 3            I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Tìm nghiệm tổng quát của hệ phương trình biết ma trận mở rộng 1 1 2 0 1 2 3 1 2 4 3 4 5 1 3 1 2 3 1 0             Ví dụ I. Hệ phương trình tuyến tính tổng quát ------------------------------------------------------------------------------------------------------------ - Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm Ví dụ 2 1 1 1 1 1 , 1 1 m m m m m          I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- 1 1 1 1 2 3 1 4 3 4 1m m          Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm Example I. I. Hệ phương trình tuyến tính tổng quát Ví dụ Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm duy nhất 1 1 1 1 1 2 1 3 1 2 , 3 4 2 0 6 2 1 0 1m m              I. Hệ phương trình tuyến tính tổng quát --------------------------------------------------------------------------------------------------------------------------- Ví dụ Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm duy nhất 2 2 3 1 4 0 3 2 1 5 7 1 1 1m m          II. Hệ thuần nhất. --------------------------------------------------------------------------------------------------------------------------- Hệ phương trình tuyến tính được gọi là thuần nhất nếu tất cả các hệ số tự do b1, b2, , bm đều bằng 0. Định nghĩa hệ thuần nhất. Hệ tuyến tính thuần nhất luôn luôn có một nghiệm bằng không x1 = x2 = = xn = 0. Nghiệm này được gọi là nghiệm tầm thường. Hệ thuần nhất chỉ có nghiệm duy nhất bằng không khi và chỉ khi r (A) = n = số ẩn . II. Hệ thuần nhất. --------------------------------------------------------------------------------------------------------------------------- Hệ thuần nhất AX = 0 có nghiệm không tầm thường khi và chỉ khi r(A) < n. Hệ thuần nhất AX = 0, với A là ma trận vuông có nghiệm không tầm thường (nghiệm khác 0) khi và chỉ khi det(A) = 0. II. Hệ thuần nhất. --------------------------------------------------------------------------------------------------------------------------- Tìm nghiệm tổng quát của hệ phương trình. Ví dụ 1 2 3 4 1 2 3 4 1 2 3 4 2 2 0 2 4 3 0 3 6 4 0 x x x x x x x x x x x x               II. Hệ thuần nhất. --------------------------------------------------------------------------------------------------------------------------- Giữa những nghiệm của hệ Ví dụ 2 0 2 4 0 2 0 x y z x y z x y z            tìm nghiệm thỏa biểu thức y – xy = 2z II. Hệ thuần nhất. --------------------------------------------------------------------------------------------------------------------------- Giả sử A là ma trận của hệ thuần nhất có 4 phương trình và 8 ẩn, giả sử có 5 ẩn tự do. Tìm r(A)? Ví dụ Giải thích vì sao hệ phương trình thuần nhất có m phương trình, n ẩn với m < n luôn luôn có vô số nghiệm. Ví dụ II. Hệ thuần nhất. ------------------------------------------------------------------------------------------------------------ - Tìm tất cả các gía trị tham số m để hệ sau có nghiệm không tầm thường Ví dụ 0 2 3 5 0 3 ( 1) 0 x y z x y z x my m z            

Các file đính kèm theo tài liệu này:

  • pdftoan_a2chuong_3_hephuongtrinh_6589.pdf
Tài liệu liên quan