Synthesis and characterization of Type-Li CdS/Znse core/shell nanostructures
Cấu trúc nano dị chất lõi vỏ loại II CdS/ZnSe đã được chế tạo thành công bằng phương pháp hóa
trong dung môi không liên kết. Công việc chế tạo của chúng tôi bao gồm việc chế tạo lõi
CdS sau đó bọc lên lớp vỏ ZnSe. Hình dạng và kích thước của các nano tinh thể CdS/ZnSe đã
được quan sát bằng kính hiển vi điện tử truyền qua. Phổ nhiễu xạ tia X đã cho thấy cấu trúc tinh
thể lập phương giả kẽm của các nano tinh thể chế tạo được. Phổ quang huỳnh quang và hấp thụ
của các nano tinh thể CdS/ZnSe cho thấy có sự dịch mạnh đỉnh phổ về phía bước sóng dài so với
đỉnh phổ của lõi CdS. Một hiệu quả tách không gian của điện tử và lỗ trống giữa lõi và vỏ đã được
quan sát với cấu trúc dị chất - một bằng chứng thực nghiệm quan trọng để chứng minh cho cấu
trúc CdS/ZnSe chế tạo được là cấu trúc loại II.
4 trang |
Chia sẻ: yendt2356 | Lượt xem: 496 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Synthesis and characterization of Type-Li CdS/Znse core/shell nanostructures, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Nguyễn Xuân Ca và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 96(08): 45 - 48
45
SYNTHESIS AND CHARACTERIZATION OF TYPE-II CdS/ZnSe
CORE/SHELL NANOSTRUCTURES
Nguyen Xuan Ca1*, Nguyen Trung Kien1,
Vu Thi Kim Lien2, Nguyen Xuan Nghia3
1 College of Science – TNU, 2 College of Education – TNU
3
Institute of Materials Science, Vietnam Academy of Science and Technology
SUMMARY
High-quality type-II CdS/ZnSe core/shell nanostructures (NSs) were synthesized by chemical
method. Our synthesis involves fabrication CdS core particles that are subsequently overcoated
with a layer of ZnSe in the noncoordinating solvent. An efficient spatial separation of electrons
and holes between the core and the shell was observed by heterostructures. The emission
wavelength of the CdS/ZnSe NSs can be changed from 568 to 589 nm for a fixed core radius.
Because of a large offset of band edges at the core/shell interface, fabricated nanocrystals (NCs)
exhibited a relatively low spectral overlap between emission and absorption profiles, with
associated Stokes shifts of up to 70nm.
Key word: spatial separations, nanostructures, semiconductor, reorganization energy.
INTRODUCTION*
Colloidal heterostructure semiconductor NCs
were synthesized from multiple materials
with different properties into a single
nanoscale object, where the spatial
localization of carriers can be precisely
controlled by anipulating shapes and sizes of
individual components [1,2]. Recently,
considerable progress was made in the
synthesis of type- II heterostructure NCs [3],
that tends to spatially separate photoexcited
electrons and holes in different parts of a
composite NCs. These core/shell NCs are
made of two semiconductor materials which
both the conduction and valence bands of
component lie lower in energy than the
corresponding bands of the other component.
As a result, one carrier is mostly confined to
the core, while the other is mostly confined to
the shell.
The type-II NCs are expected to have many
new properties that are fundamentally
different from the type-I NCs because of the
spatial separations of carriers. The type-II
NCs can allow access to wavelengths that
would otherwise not be available with a
*
Tel: 0985 338855, Email: nxuanca80@yahoo.com
single material. Furthermore, the separation of
charges in the lowest excited states of type-II
NCs should make these materials more
suitable in photovoltaic [4-6] or
photoconduction applications [7,8]. One
important application of type-II NCs is in
lasing technologies [9], where they can be
used for obtaining optical gain in the low-
threshold single-exciton regime without
complications associated with multiexciton
nonradiative Auger recombination.
In the present study, we report the synthesis
of CdS/ZnSe type II NSs by the chemical
method in a noncoordinating solvent The two-
step synthesis involved growth and
purification of the CdS core followed by
deposition of a ZnSe shell. The QY of as-
prepared nanocrystals was in the range of 7-
10%. Upon deposition of the ZnSe shell onto
the CdS core, the fluorescence emission of
NSs red-shifted from 568 to 589 nm, while
main absorption edge remained near its
original value measured in CdS core (465
nm). We noticed that for all fabricated
combinations of the NSs sizes, the spectral
overlap between absorption and emission
profiles was relatively low, which is
characteristic of spatially indirect carrier
recombination.
Nguyễn Xuân Ca và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 96(08): 45 - 48
46
Figure 1. The TEM images of CdS NCs and CdS/ZnSe NSs with difference size.
The scale bars are 20 nm
EXPERIMENTS
Colloidal CdS/ZnSe NSs were prepared by the
wet chemical method in octadecene (ODE)
solvent. Trioctylphosphine and oleic acid were
used as the ligands. The two-step synthesis
involved the preparation of CdS core followed
by the deposition of ZnSe shell. The ODE
solutions of as-synthesized CdS core and
CdS/ZnSe NSs were mixed with isopropanol,
and then centrifuged. The obtained powder
products were redissolved in toluene for the
morphology analyses and room-temperature
spectroscopic measurements.
TEM images of CdS nanocrystals (NCs) and
CdS/ZnSe NSs were obtained using a JEM
1010 microscope (Jeol). The optical
absorption spectra were recorded with Jasco
670 spectrometer (Varian). The room-
temperature PL spectra were measured using
MicroSpec 2300i spectrometer with 325 nm
excitation line of He-Cd laser.
RESULTS AND DISCUSSION
Figure 1 shows the TEM images of the initial
CdS core (A), the type-II CdS/ZnSe core/shell
NSs with a thin shell (B), a medium shell (C)
and a thick shell (D) fabricated by
overcoating CdS core with ZnSe shell at
250°C. While CdS particles are nearly
spherical with a narrow dispersion size (core
diameters are 5.5 nm), the final NSs have
irregular shapes as previously observed for
other types of core/shell structures [11,13].
However, the NSs size clearly increases
following deposition of the shell. Basing on
the TEM images, we estimate that the
diameter of CdS/ZnSe NSs is from 7.7 to
12nm corresponding to the ZnSe shell 1.1 to
3.25nm thickness (from 2 to 6 monolayer
(ML)). Despite the irregular shape of these
NSs, we believe that the deposition of the
ZnSe shell occurs over the entire surface of
the CdS cores.
Figure 2. The XRD spectra of CdS-core (A) and
CdS/ZnSe (B-D) core/shell NSs.
A B
D C
Nguyễn Xuân Ca và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 96(08): 45 - 48
47
Figure 3 shows the evolution of the optical
absorption and emission spectra of the
CdS/ZnSe NSs during the growth of the ZnSe
shell on the CdS cores. Upon slow addition of
Zn and Se precursors to the reaction flask, the
CdS absorption peak began to broaden,
developing a low-energy tail that extended
into blue or yellow for large NSs. This
indicates an onset of indirect type II
absorption feature, which is characterized by
electronic transitions across the core/shell
interface with energies lower than absorption
of CdS or ZnSe NCs. Previous studies of the
type II NSs [11-13] also reported a similar
broadening effect, which is proportional to
the type II energy offset at the interface. A
gradual increase in the type II charge
separation is also seen in the evolution of the
FL spectra during nanocrystal growth. The
original CdS core exhibited a fluorescence
peak at 465 nm. Upon the addition of Zn and
Se precursors, this band quickly diminished,
which is likely due to the removal of surface
passivating ligands in CdS, while a new
emission feature began to develop from 568
to 589 nm.
We show that, the measured emission
energies in the CdS/ZnSe NSs are smaller
than those in either CdS or ZnSe NCs due to
the spatially indirect character of electronic
transitions across the core/shell interface.
Throughout the entire growth process of all
the three typical samples (B-D), the FWHM
was controlled below 50 nm, indicating
narrowsize distributions. By the change of
core sizes and/or shell thicknesses, adjustable
PL spanning most of the visible range was
obtained.
Figure 3. the evolution of the optical absorption
and emission spectra of the NCs during the growth
of the ZnSe shell on the CdS cores.
CONCLUSION
The type-II CdS/ZnSe core/shell NSs were
fabricated via colloidal synthesis by
continuous deposition of Zn and Se
organometallic precursors onto monodisperse
CdS NCs. The samples were characterized by
TEM, UV-vis absorption and FL
spectroscopy, and X-ray diffractrometry. An
efficient charge separation across the
interface in the CdS/ZnSe NSs was witnessed
by a strong PL originating from spatially
indirect carrier recombination. The charge
separation in CdS/ZnSe results in the core
localization of excited electrons and shell
localization of holes, which can be utilized in
dye sensitized solar cells. Finally, the
emission wavelength of fabricated CdS/ZnSe
NSs is tunable in a wide spectral range, which
is an important property for type-II NSs due
to their potential use in hybrid LED, lasing
applications and photovoltaics.
REFERENCES
[1]. K. Rajeshwar, C. R.Chenthamarakshan, N. R.
D. Tacconi, Chem. Mater 13 (2001) 2765–2782.
[2]. P. D. Cozzoli, T. Pellegrino, L. Manna,
Chem.Soc. Rev 35 (2006) 1195–1208.
[3]. N. Alexander, K. Maria, N. Nishshanka, K.
Hewa, Z. Mikhail, J. Phys. Chem. C 112 (2008)
9301–9307
[4]. B. Jiwon, P. Juwon, J. H. Lee, W. Nayoun, N.
Jutaek, L. Jongwoo, B. Y. Chang, H. J. Lee, C.
Bonghwan, S. Junghan, J. B. Park, J. H. Choi, C.
Kilwon, S. M. Park, J.Taiha, K. Sungjee, Chem.
Mater 22 (2010) 233–240
[5]. J. Nanda, S. A. Ivanov, M. Achermann, I.
Bezel, A. Piryatinski, V. I. Klimov, J. Phys.
Chem. C 111 (2007) 15382-15390
[6]. S. Kim, B. Fisher, H. J. Eisler, M. J. Bawendi,
Am. Chem. Soc 125 (2003) 11466-11467.
[7]. O. Schops, N. L. Thomas, U. Woggon, M. V.
J. Artemyev, Phys.Chem. B 110 (2006) 2074-2079
[8]. Y. K. Zaman, B. Romanova, S. Wang, D.
Ripmeester, J. Small 1 (2005) 332-338
[9]. R. Xie, X. Zhong, T. Basche, Adv. Mater. 17
(2005) 2741-2746
[10]. C. T. Cheng, C. Y. Chen, C. W. Lai, W. H.
Liu, S. C. Pu, P. T. Chou, Y. H. Chou, H. T. Chiu,
J. Mater. Chem 15 (2005) 3409 - 3414
[11]. M. Danek, K. F. Jensen, C. B. Murray, M. G.
Bawendi, Chem.Mater 8 (1996) 173-180
Nguyễn Xuân Ca và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 96(08): 45 - 48
48
[12]. S. A. Ivanov, J. Nanda, A. Piryatinski, M.
Achermann, L. P. Balet, I. V. Bezel, P. O.
Anikeeva, S. Tretiak, V. I. Klimov, J. Phys.Chem.
B 108 (2004) 10625-10630.
[13]. S. A. Ivanov, A. Piryatinski, J. Nanda, S.
Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder,
V. I. Klimov, J. Am. Chem. Soc 129 (2007)11708
– 11719.
TÓM TẮT
CHẾ TẠO VÀ ĐẶC TRƯNG CỦA CẤU TRÚC NANO
LÕI/VỎ LOẠI- II CdS/ZnSe
Nguyễn Xuân Ca1*, Nguyễn Trung Kiên1,
Vũ Thị Kim Liên2, Nguyễn Xuân Nghĩa3
1Trường Đại học Khoa học – ĐH Thái Nguyên,
2Trường Đại học Sư phạm – ĐH Thái Nguyên,3Viện Khoa học Công nghệ Việt Nam
Cấu trúc nano dị chất lõi vỏ loại II CdS/ZnSe đã được chế tạo thành công bằng phương pháp hóa
trong dung môi không liên kết. Công việc chế tạo của chúng tôi bao gồm việc chế tạo lõi
CdS sau đó bọc lên lớp vỏ ZnSe. Hình dạng và kích thước của các nano tinh thể CdS/ZnSe đã
được quan sát bằng kính hiển vi điện tử truyền qua. Phổ nhiễu xạ tia X đã cho thấy cấu trúc tinh
thể lập phương giả kẽm của các nano tinh thể chế tạo được. Phổ quang huỳnh quang và hấp thụ
của các nano tinh thể CdS/ZnSe cho thấy có sự dịch mạnh đỉnh phổ về phía bước sóng dài so với
đỉnh phổ của lõi CdS. Một hiệu quả tách không gian của điện tử và lỗ trống giữa lõi và vỏ đã được
quan sát với cấu trúc dị chất - một bằng chứng thực nghiệm quan trọng để chứng minh cho cấu
trúc CdS/ZnSe chế tạo được là cấu trúc loại II.
Từ khóa: tách không gian, cấu trúc nano, bán dẫn, năng lượng tái tổ hợp.
*
Tel: 0985 338855, Email: nxuanca80@yahoo.com
Các file đính kèm theo tài liệu này:
- brief_36032_39591_171201315203245_4447_2052284.pdf