Signal processing - Transform analysis of lti systems
Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
113 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 725 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Signal processing - Transform analysis of lti systems, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
nalysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 18
sites.google.com/site/ncpdhbkhn 19
Response to Aperiodic Inputs
( ) ( ) ( )
j j jY e H e X eω ω ω=
( ) ( ) ( )
( ) ( ) ( )
j j j
j j j
Y e H e X e
Y e H e X e
ω ω ω
ω ω ω
=
→
∠ = ∠ +∠
sites.google.com/site/ncpdhbkhn 20
Power Gain
2
10Gain in dB 10( ) log ( )
j j
dB
H e H eω ω= =
( ) ( ) ( ) ( ) ( ) ( )j j j j j j
dB dB dB
Y e H e X e Y e H e X eω ω ω ω ω ω= → = +
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 21
sites.google.com/site/ncpdhbkhn 22
Distortion of Signals Passing
through LTI Systems (1)
A system has distortionless response if the input signal x[n]
and the output signal y[n] have the same “shape”
0[ ] [ ],dy n Gx n n G= − >
( ) ( )d
j nj jY e Ge X eωω ω−→ =
( )
( )
( )
d
j
j nj
j
Y eH e Ge
X e
ω
ωω
ω
−→ = =
( )
( )
j
j
d
H e G
H e n
ω
ω ω
=
→
∠ = −
sites.google.com/site/ncpdhbkhn 23
Distortion of Signals Passing
through LTI Systems (2)
[ ] ( ) cos ( )j jx xy n A H e n H e
ω ωω φ = + +∠
( )
( ) cos
j
j x
x
H eA H e n
ω
ω φω
ω ω
∠
= + +
( )
( )
j
phase delay
H e ω
τ ω
ω
∠
= −
( )
( )group delay
d
d
ω
τ ω
ω
Ψ
= −
[ ] [ ]cos [ ] ( ) [ ( )]cos{ [ ( )]}c
j
c gd c c pd cx n s n n y n H e s n n
ωω τ ω ω τ ω= → ≈ − −
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 24
sites.google.com/site/ncpdhbkhn 25
Ideal and Practical Filters (1)
ω
( )jlpH e ω
1
cωcω− pipi− 0
Lowpass Highpass
Bandpass Bandstop
ω
1
cω
( )jhpH e ω
0pi− cω− pi
ω
1
lω uω
( )jbpH e ω
0l
ω−uω−
pipi−
ω
1
lω uω
( )jbsH e ω
0lω−uω−
pi− pi
sites.google.com/site/ncpdhbkhn 26
Ideal and Practical Filters (2)
-20 -15 -10 -5 0 5 10 15 20
0
0.2
0.4
0.6
0.8
1
n
x
[
n
]
-20 -15 -10 -5 0 5 10 15 20
-0.5
0
0.5
1
n
h
[
n
]
-20 -15 -10 -5 0 5 10 15 20
-2
0
2
4
6
n
y
[
n
]
0
,
( )
,
dj n
cj
lp
c
e
H e
ω
ω
ω ω
ω ω pi
− <
=
< ≤
sin ( )
[ ]
( )
c d
lp
d
n nh n
n n
ω
pi
−
→ =
−
[ ]lp
n
h n
∞
=−∞
= ∞∑
The ideal lowpass filter
is unstable and practically
unrealizable
ω
( )jlpH e ω
1
cωcω− pipi− 0
sites.google.com/site/ncpdhbkhn 27
Ideal and Practical Filters (3)
ω
1
lω uω
( )jbpH e ω
0l
ω−uω−
pipi−
ω
1
1lω 1uω
( )jbpH e ω
0 pi2uω2lω
Transition – band Transition – band
Passband
Stopband Stopband
sin ( )
[ ]
( )
c d
lp
d
n nh n
n n
ω
pi
−
=
−
0 1
0 otherwise
sin ( )
,
ˆ ( )[ ]
,
c d
dlp
n n
n M
n nh n
ω
pi
− ≤ ≤ −
−=
0
,
( )
,
dj n
cj
lp
c
e
H e
ω
ω
ω ω
ω ω pi
− <
=
< ≤
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 28
sites.google.com/site/ncpdhbkhn 29
Frequency Response for
Rational System Functions (1)
1 1
1 1[ ] [ ] [ ]
N M
k k
k k
y n a y n b x n
= =
= − − + −∑ ∑
1
1
1
( )
( )
( )
M
k
k
k
N
k
k
k
b z
B zH z
A z
a z
−
=
−
=
→ = =
+
∑
∑
1
1
1
( )
( )
( ) j
M
j k
k
j k
N
j kz e
k
k
b e
B zH e
A z
a e
ω
ω
ω
ω
−
=
−
=
=
→ = =
+
∑
∑
1
1 1
0 0
1
1 1
1 1
1 1
( ) ( )
( ) ( )
j
M M
j
k k
k k
N N
j
k k
k kz e
z z z e
b b
p z p e
ω
ω
ω
− −
= =
− −
= ==
− −
= =
− −
∏ ∏
∏ ∏
sites.google.com/site/ncpdhbkhn 30
Frequency Response for
Rational System Functions (2)
1
0
1
1
1
( )
( )
( )
M
j
k
j k
N
j
k
k
z e
H e b
p e
ω
ω
ω
−
=
−
=
−
=
−
∏
∏
→
1
1
0
1
1
1
1
( )
M
k
j k
N
k
k
z z
H e b
p z
ω
−
=
−
=
−
=
−
∏
∏
0
1 1
1 1( ) ( ) ( )
M N
j j j
k k
k k
H e b z e p eω ω ω− −
= =
∠ = ∠ + ∠ − − ∠ −∑ ∑
1 1
1 1( ) [ ( )] [ ( )]
M N
j j
group delay k k
k k
d d
z e p e
d d
ω ωτ ω
ω ω
− −
= =
= ∠ − − ∠ −∑ ∑
sites.google.com/site/ncpdhbkhn 31
Frequency Response for
Rational System Functions (3)
1( ) ( )j jC e eβ ωω α −= −
1 cos( ) sin( )jα ω β α ω β= − − + −
2 1 1*( ) ( ) ( ) ( )( )j j j jC C C e eβ ω β ωω ω ω α α− − += = − −
21 2 cos( )α α ω β= + − −
→
1
sin( )
( ) atan
cos( )
C α ω βω
α ω β
−∠ =
− −
2
21 2
( ) cos( )
( )
cos( )
gd
d
d
ω α α ω β
τ ω
ω α α ω β
Ψ − −
= − =
+ − −
sites.google.com/site/ncpdhbkhn 32
Frequency Response for
Rational System Functions (4)
;k k
j j
k k k kz q e p r e
θ φ
= =
2
1
0
2
1
0
1 1
2 2
2
1
1 2
1 2
atan atan
1 1
atan atan
1 2
cos( )
( )
cos( )
sin( ) sin( )
( )
cos( ) cos( )
cos( ) cos(
( )
cos( )
M
k k k
j k
N
k k k
k
M N
j k k k k
k kk k k k
N
k k k k k
gd
k k k k
q q
H e b
r r
q rH e b
q r
r r q q
r r
ω
ω
ω θ
ω φ
ω θ ω φ
ω θ ω φ
ω φ ω
τ ω
ω φ
=
=
= =
=
+ − −
=
+ − −
− −→ ∠ = ∠ + −
− − − −
− − −
= −
+ − −
∏
∏
∑ ∑
∑ 2
1 1 2
)
cos( )
M
k
k k k kq q
θ
ω θ
=
−
+ − −
∑
sites.google.com/site/ncpdhbkhn 33
Frequency Response for
Rational System Functions (5)Ex.
Draw the magnitude spectrum of 0 1 2 2
01 2
( )
cos( )
bH z
r z r zω − −
=
− +
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
a) Geometrical Evaluation of H(ejω) from Poles and Zeros
b) Significance of Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 34
sites.google.com/site/ncpdhbkhn 35
Geometrical Evaluation of H(ejω)
from Poles and Zeros (1)
1
0
1
1
1
( )
( )
( )
M
j
k
j k
N
j
k
k
z e
H e b
p e
ω
ω
ω
−
=
−
=
−
=
−
∏
∏
1
0
1
( )
( )
( )
M
j
k
j N M k
N
j
k
k
e z
b e
e p
ω
ω
ω
− =
=
−
=
−
∏
∏
0 1
Re
Im
O
Z
ω
kZ
kθ
j
k ke z
ω
− → −Z Z
k−Z Z
kΘkQ
kj
kQ e Θ=
×
kP kφ
j
k ke p
ω
− → −Z P kjkR e
Φ
= k
R
k−Z P
kΦ
kα kβ
1
0
1
0
1 1
( )
( )
( )
exp ( ) ( ) ( )
M
k
j k
N
k
k
M N
k k
k k
Q
H e b
R
j b N M
ω
ω
ω
ω ω ω
=
=
= =
= ×
× ∠ + − + Θ − Φ
∏
∏
∑ ∑
sites.google.com/site/ncpdhbkhn 36
Geometrical Evaluation of H(ejω)
from Poles and Zeros (2)
1
0 0
1 1
1
( )
( ) exp ( ) ( ) ( )
( )
M
k M N
j k
k kN
k k
k
k
Q
H e b j b N M
R
ω
ω
ω ω ω
ω
=
= =
=
= × ∠ + − + Θ − Φ
∏
∑ ∑
∏
1
0
1
0
1 1
( )
( )
( )
( ) ( ) ( ) ( )
M
k
j k
N
k
k
M N
j
k k
k k
Q
H e b
R
H e b N M
ω
ω
ω
ω
ω ω ω
=
=
= =
=
→
∠ = ∠ + − + Θ − Φ
∏
∏
∑ ∑
0 1
Re
Im
O
Z
ω
kZ
kθ
k−Z Z
kΘkQ×
kP kφ
kR
k−Z P
kΦ
kα kβ
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
a) Geometrical Evaluation of H(ejω) from Poles and Zeros
b) Significance of Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 37
sites.google.com/site/ncpdhbkhn 38
Significance of Poles and Zeros
(1)
1
0 0
1 1
1
( )
( ) exp ( ) ( ) ( )
( )
M
k M N
j k
k kN
k k
k
k
Q
H e b j b N M
R
ω
ω
ω ω ω
ω
=
= =
=
= × ∠ + − + Θ − Φ
∏
∑ ∑
∏
( )j j j
k k
K KH e
e p R e
ω
ω ω
= =
−
0 1
Re
Im
O
Z
ω
kZ
kθ
k−Z Z
kΘkQ×
kP kφ
kR
k−Z P
kΦ
kα kβ
( )
( ) ( )
j
k
j
k
KH e
R
H e
ω
ω ω ω
=
→
∠ = −Φ
( ) ( )k k k kα φ ω pi φ pi+ − + Φ + − =
k kω α→ −Φ =
( )
j
kH e
ω α→∠ =
sites.google.com/site/ncpdhbkhn 39
Significance of Poles and Zeros
(2)
( )j j j
k k
K KH e
e p R e
ω
ω ω
= =
−
0 0.5 1 1.5
2
3
4
5
6
7
8
9
ω
|
H
(
j
ω
)
|
pk = 0.8e
jpi/6
pk = 0.9e
jpi/6
pk = 0.1e
jpi/6
0 0.5 1 1.5
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
ω
∠
H
(
j
ω
)
pk = 0.8e
jpi/6
pk = 0.9e
jpi/6
pk = 0.1e
jpi/6
sites.google.com/site/ncpdhbkhn 40
Significance of Poles and Zeros
(3)
j
j j j j
k k k k
K KH e
e p e p R e R e
ω
ω ω ω ω−
= =
− −
*
( )
( )( )
0 0.5 1 1.5
1
2
3
4
5
6
7
8
9
ω
|
H
(
j
ω
)
|
pk = 0.8e
jpi/6
pk = 0.9e
jpi/6
pk = 0.1e
jpi/6
0 0.5 1 1.5
0
0.5
1
1.5
2
ω
∠
H
(
j
ω
)
pk = 0.8e
jpi/6
pk = 0.9e
jpi/6
pk = 0.1e
jpi/6
sites.google.com/site/ncpdhbkhn 41
Significance of Poles and Zeros
(4)
1
0 0
1 1
1
( )
( ) exp ( ) ( ) ( )
( )
M
k M N
j k
k kN
k k
k
k
Q
H e b j b N M
R
ω
ω
ω ω ω
ω
=
= =
=
= × ∠ + − + Θ − Φ
∏
∑ ∑
∏
( ) ( )
j j j
k kH e K e z KQ eω ω ω= − =
0 1
Re
Im
O
Z
ω
kZ
kθ
k−Z Z
kΘkQ×
kP kφ
kR
k−Z P
kΦ
kα kβ
( )
( ) ( )
j
k
j
k
H e KQ
H e
ω
ω ω ω
=
→
∠ = −Θ
( ) ( )j kH e
ω ω ω β→∠ = − + Θ =
sites.google.com/site/ncpdhbkhn 42
Significance of Poles and Zeros
(5)
( ) ( )
j j j
k kH e K e z KQ eω ω ω= − =
0 0.5 1 1.5
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
ω
|
H
(
j
ω
)
|
zk = 0.8e
jpi/6
zk = 0.9e
jpi/6
zk = 0.1e
jpi/6
0 0.5 1 1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
ω
∠
H
(
j
ω
)
zk = 0.8e
jpi/6
zk = 0.9e
jpi/6
zk = 0.1e
jpi/6
sites.google.com/site/ncpdhbkhn 43
Significance of Poles and Zeros
(6)
j j j j j
k k k kH e K e z e z KQ e Q eω ω ω ω ω−= − − =*( ) ( )( )
0 0.5 1 1.5
0.2
0.4
0.6
0.8
1
1.2
1.4
ω
|
H
(
j
ω
)
|
pk = 0.8e
jpi/6
pk = 0.9e
jpi/6
pk = 0.1e
jpi/6
0 0.5 1 1.5
-3
-2
-1
0
1
2
3
ω
∠
H
(
j
ω
)
pk = 0.8e
jpi/6
pk = 0.9e
jpi/6
pk = 0.1e
jpi/6
sites.google.com/site/ncpdhbkhn 44
Significance of Poles and Zeros
(7)
{ak, bk}
Time -
Domain
Frequency
- Domain
z -
Domain
jz e ω=
j
e zω =
1 1
1 1[ ] [ ] [ ]
N M
k k
k k
y n a y n b x n
= =
= − − + −∑ ∑
1
1
1
( )
M
k
k
k
N
k
k
k
b z
H z
a z
−
=
−
=
=
+
∑
∑
1
1
1
( )
M
j k
k
j k
N
j k
k
k
b e
H e
a e
ω
ω
ω
−
=
−
=
=
+
∑
∑
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
a) Discrete – Time Resonators
b) Notch Filters
c) Comb Filters
d) Pole – Zero Pattern Rotation
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 45
Design of Simple Filters
by Pole – Zero Placement
• To suppress a frequency component at ω = ω0, we
should place a zero at angle θ = ω0 on the unit circle
• To enhance or amplify a frequency component at ω =
ω0, we should place a pole at angle ϕ = ω0 close but
inside the unit circle
• Complex poles or zeros should appear in complex
conjugate pairs to assure that the system has real
coefficients
• Poles or zeros at the origin do not influence the
magnitude response because their distance from any
point on the unit circle is unity. However, a pole (or
zero) at the origin adds (or subtracts) a linear phase of
ω rads to the phase response. We often introduce poles
and zeros at z = 0 to assure that N = M
sites.google.com/site/ncpdhbkhn 46
sites.google.com/site/ncpdhbkhn 47
Discrete – Time Resonators (1)
0 0
1 2 2 1 11 2 1 1
( )
cos ( )( )
j j
b bH z
r z r z re z re zφ φφ − − − − −= =− + − −
2
0
0
2 1 2
1
[ ] ( cos ) [ ] [ ] [ ]
sin[( ) ]
[ ] [ ]
sin
n
y n r y n r y n b x n
nh n b r u n
φ
φ
φ
= − − − +
→ +
=
-1.5 -1 -0.5 0 0.5 1 1.5
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
2
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
sites.google.com/site/ncpdhbkhn 48
Discrete – Time Resonators (2)
0 0
1 2 2 1 11 2 1 1
( )
cos ( )( )
j j
b bH z
r z r z re z re zφ φφ − − − − −= =− + − −
2
0
0
2 1 2
1
[ ] ( cos ) [ ] [ ] [ ]
sin[( ) ]
[ ] [ ]
sin
n
y n r y n r y n b x n
nh n b r u n
φ
φ
φ
= − − − +
→ +
=
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-100
-50
0
50
100
Normalized Frequency (×pi rad/sample)
P
h
a
s
e
(
d
e
g
r
e
e
s
)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10
-5
0
5
10
15
20
Normalized Frequency (×pi rad/sample)
M
a
g
n
i
t
u
d
e
(
d
B
)
cω
21
2
cos cos
c
r
r
ω φ+=
A discrete – time
resonator
sites.google.com/site/ncpdhbkhn 49
Discrete – Time Resonators (3)
0 0
1 2 2 1 11 2 1 1
( )
cos ( )( )
j j
b bH z
r z r z re z re zφ φφ − − − − −= =− + − −
2
0
0
2 1 2
1
[ ] ( cos ) [ ] [ ] [ ]
sin[( ) ]
[ ] [ ]
sin
n
y n r y n r y n b x n
nh n b r u n
φ
φ
φ
= − − − +
→ +
=
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1
0
1
2
3
4
5
6
7
8
9
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
sites.google.com/site/ncpdhbkhn 50
Discrete – Time Resonators (4)
0 0
1 2 2 1 11 2 1 1
( )
cos ( )( )
j j
b bH z
r z r z re z re zφ φφ − − − − −= =− + − −
2
0
0
2 1 2
1
[ ] ( cos ) [ ] [ ] [ ]
sin[( ) ]
[ ] [ ]
sin
n
y n r y n r y n b x n
nh n b r u n
φ
φ
φ
= − − − +
→ +
=
0
1
If
sin
r
b A φ
=
=
1[ ] sin[( ) ] [ ]h n A n u nφ→ = +
A discrete – time
sinusoidal oscillator
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
a) Discrete – Time Resonators
b) Notch Filters
c) Comb Filters
d) Pole – Zero Pattern Rotation
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 51
sites.google.com/site/ncpdhbkhn 52
Notch Filters (1)
1 2 2
0 1 2( ) [ cos ]H z b r z r zφ − −= − +
-3 -2 -1 0 1 2 3
0.5
1
1.5
2
omega
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-1
-0.5
0
0.5
1
omega
P
h
a
s
e
(
r
a
d
)
sites.google.com/site/ncpdhbkhn 53
Notch Filters (2)
1 2
0 1 2 2
1 2
1 2
cos
( )
cos
z zH z b
r z r z
φ
φ
− −
− −
− +
=
− +
-3 -2 -1 0 1 2 3
0.5
1
1.5
2
omega
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-1.5
-1
-0.5
0
0.5
1
1.5
omega
P
h
a
s
e
(
r
a
d
)
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
a) Discrete – Time Resonators
b) Notch Filters
c) Comb Filters
d) Pole – Zero Pattern Rotation
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 54
sites.google.com/site/ncpdhbkhn 55
Comb Filters (1)
( ) [ ] n
n
H z h n z
∞
−
=−∞
= ∑ ( ) ( ) [ ]L nL
n
G z H z h n z
∞
−
=−∞
→ = = ∑
( ) [ ] ( )j j Ln j L
n
G e h n e H eω ω ω
∞
=−∞
→ = =∑
0 2
0 otherwise
[ / ], , , , ...
[ ]
,
h n L n L L
g n
= ± ±
→ =
sites.google.com/site/ncpdhbkhn 56
Comb Filters (2)
11( )H z z−= − 1( ) LG z z−→ = −
-3 -2 -1 0 1 2 3
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
omega (rad)
M
a
g
n
i
t
u
d
e
H
G
-3 -2 -1 0 1 2 3
-1.5
-1
-0.5
0
0.5
1
1.5
omega (rad)
P
h
a
s
e
(
r
a
d
)
H
G
Ex. 1
sites.google.com/site/ncpdhbkhn 57
Comb Filters (3)
1 1[ ] [ ] [ ],y n ay n D x n a= − + − < <
0
1
1
[ ] [ ] ( )k D
k
h n a n kD H z
az
δ
∞
−
=
= − ↔ =
−
∑
Ex. 2
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
7
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
sites.google.com/site/ncpdhbkhn 58
Comb Filters (4)
1 1[ ] [ ] [ ],y n ay n D x n a= − + − < <
0
1
1
[ ] [ ] ( )k D
k
h n a n kD H z
az
δ
∞
−
=
= − ↔ =
−
∑
Ex. 2
0 10 20 30 40 50 600
0.2
0.4
0.6
0.8
1
n (samples)
A
m
p
l
i
t
u
d
e
Impulse Response
sites.google.com/site/ncpdhbkhn 59
Comb Filters (5)
1 1[ ] [ ] [ ],y n ay n D x n a= − + − < <
0
1
1
[ ] [ ] ( )k D
k
h n a n kD H z
az
δ
∞
−
=
= − ↔ =
−
∑
Ex. 2
-3 -2 -1 0 1 2 3
0.8
1
1.2
1.4
1.6
1.8
omega (rad)
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
omega (rad)
M
a
g
n
i
t
u
d
e
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
a) Discrete – Time Resonators
b) Notch Filters
c) Comb Filters
d) Pole – Zero Pattern Rotation
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 60
sites.google.com/site/ncpdhbkhn 61
Pole – Zero Pattern Rotation (1)
1
0
1
[ ] [ ]
M
k
y n x n k
M
−
=
= −∑
1
1 1
0
1 0 1 1 1 1 1
1 10 elsewhere
,
[ ] ( )
( )
,
M MM
k
M
k
n M z zh n H z zM
M M z M z z
−
−
−
− −
=
≤ < − −
= ↔ = = × = ×
− −
∑
-3 -2 -1 0 1 2 3
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
omega (rad)
M
a
g
n
i
t
u
d
e
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
9
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
M – point moving average filter
sites.google.com/site/ncpdhbkhn 62
Pole – Zero Pattern Rotation (2)
1
1 1
0
1 1 1 1 1
1 1
( )
( )
M MM
k
M
k
z zH z z
M M z M z z
−
−
−
− −
=
− −
= = × = ×
− −
∑
1 0 0 1 1, , , ...,M kk Mz z W k M− = → = = −
[ ] [ ]
mk
Mg k W h k=
DTFT [ ]
[ ] ( )m m
j k j
e h k H eω ω ω−←→
1
0
1
( ) ( )
M
m k
M
k
G z W z
M
−
− −
=
→ = ∑ 1
1 1
1
( )
( )
m M
M
m
M
W z
M W z
− −
− −
−
= ×
−
1
1
1
0
1 1 1 1
1
( )
M M
k
Mm
kM
k m
z W z
M W z M
−
−
−
−
=
≠
−
= × = −
−
∏
sites.google.com/site/ncpdhbkhn 63
Pole – Zero Pattern Rotation (3)
1
1
1
0
1 1 1 1
1
( ) ( )
M M
k
Mm
kM
k m
zG z W z
M W z M
−
−
−
−
=
≠
−
= × = −
−
∏
1 0 0 1 1, , , ...,M kk Mz z W k M− = → = = −
6
1010 6 0 3090 0 9511, . .M m W j= = → = +
10
1
1 1
10 1 0 3090 0 9511
( )
( . . )
zG z j z
−
−
−
→ = ×
− +
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
9
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
-3 -2 -1 0 1 2 3
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
omega (rad)
M
a
g
n
i
t
u
d
e
Complex bandpass filter
sites.google.com/site/ncpdhbkhn 64
Pole – Zero Pattern Rotation (4)
1
1 1
0
1 1 1 1 1
1 1
( )
( )
M MM
k
M
k
z zH z z
M M z M z z
−
−
−
− −
=
− −
= = × = ×
− −
∑
1 0 0 1 1, , , ...,M kk Mz z W k M− = → = = −
2[ ] cos( / )f k m M kpi=
DTFT 1 1
2 2
[ ] [ ]
[ ]cos ( ) ( )m m
j j
m
h k k H e H eω ω ω ωω − +←→ +
1
0
2
( ) cos
M
k
k
mF z k z
M
pi−
−
=
→ =
∑ ( )1
0
1
2
M
mk mk k
M M
k
W W z
−
− −
=
= +∑
1
1 1 1 1
21 1
1 1 1 1
2 1 2 1 1 1
( ) cos
( )( )
M
M M
m m m m
M M M M
z z m
z z M
W z W z W z W z
pi
− −
− −
− − − − − −
− −
− −
= × + × =
− − − −
sites.google.com/site/ncpdhbkhn 65
Pole – Zero Pattern Rotation (6)
-3 -2 -1 0 1 2 3
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
omega (rad)
M
a
g
n
i
t
u
d
e
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
9
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
9
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
-3 -2 -1 0 1 2 3
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
omega (rad)
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
1
2
3
4
5
6
7
8
9
10
omega (rad)
M
a
g
n
i
t
u
d
e
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
9
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 66
sites.google.com/site/ncpdhbkhn 67
Relationship between Magnitude
and Phase Responses (1)
( ) ( ) j
j
z e
H e H z ωω
=
=
( ) [ ] k
k
H z h k z
∞
−
=−∞
= ∑
2
*
( ) ( ) ( ) ( )j
j j j
z e
R z H e H e H eω ω ω ω
=
= =
* * *( ) [ ] [ ]
j
j j k k
k k z e
H e h k e h k z
ω
ω ω
∞ ∞
=−∞ =−∞ =
= =∑ ∑
*
*[ ]( )k
k
h k z
∞
=−∞
=
∑ 1
*
*[ ]( / ) k
k
h k z
∞
−
=−∞
=
∑
1* *( / ) ( )H z V z= =
V(z) is obtained by conjugating the coefficients of H(z)
and replacing everywhere z–1 by z
sites.google.com/site/ncpdhbkhn 68
Relationship between Magnitude
and Phase Responses (2)
1
1 1
0
1
1 1
1
1 1
( )
( )
( )
M M
k
k k
k k
N N
k
k k
k k
b z z z
H z b
a z p z
− −
= =
− −
= =
−
= =
+ −
∑ ∏
∑ ∏
1* *( ) ( ) ( / )R z H z H z=
1
0
1
1
1
1
*
* *
*
( )
( / )
( )
M
k
k
N
k
k
z z
H z b
p z
=
=
−
=
−
∏
∏
1
2 1
0
1
1
1 1
1 1
*
*
( )( )
( )
( )( )
M
k k
k
N
k k
k
z z z z
R z b
p z p z
−
=
−
=
− −
→ =
− −
∏
∏
sites.google.com/site/ncpdhbkhn 69
Relationship between Magnitude
and Phase Responses (3)
1 11 1 1 1 1 1( ) ( )( ), ,H z az bz a b− −= − − − < < − < <
1 2,z a z b= =
1* *( ) ( ) ( / )R z H z H z= 1( ) ( / )H z H z=
Ex.
[ ]1 11 1 1 1( )( ) ( )( )az bz az bz− − = − − − −
1 2 3 1 1, , / , /z a z b z a z b= = = =
1 1
1
1
2
1
3
4
1 1
1 1
1 1
1 1
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
H z az bz
H z az bz
H z az bz
H z az bz
− −
−
−
= − −
= − −
→
= − −
= − −
sites.google.com/site/ncpdhbkhn 70
Relationship between Magnitude
and Phase Responses (4)Ex.
1 11 1 1 1 1 1( ) ( )( ), ,H z az bz a b− −= − − − < < − < <
1 1 1 1
1 2 3 41 1 1 1 1 1 1 1( ) ( )( ); ( ) ( )( ); ( ) ( )( ); ( ) ( )( )H z az bz H z az bz H z az bz H z az bz
− − − −
= − − = − − = − − = − −
1H 2H
3H 4H
-3 -2 -1 0 1 2 3
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
omega (rad)
M
a
g
n
i
t
u
d
e
o
f
H
1
-3 -2 -1 0 1 2 3
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
omega (rad)
P
h
a
s
e
o
f
H
1
(
r
a
d
)
-3 -2 -1 0 1 2 3
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
omega (rad)
M
a
g
n
i
t
u
d
e
o
f
H
1
-3 -2 -1 0 1 2 3
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
omega (rad)
P
h
a
s
e
o
f
H
1
(
r
a
d
)
-3 -2 -1 0 1 2 3
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
omega (rad)
M
a
g
n
i
t
u
d
e
o
f
H
1
-3 -2 -1 0 1 2 3
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2
omega (rad)
P
h
a
s
e
o
f
H
1
(
r
a
d
)
-3 -2 -1 0 1 2 3
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
omega (rad)
M
a
g
n
i
t
u
d
e
o
f
H
1
-3 -2 -1 0 1 2 3
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
omega (rad)
P
h
a
s
e
o
f
H
1
(
r
a
d
)
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 71
sites.google.com/site/ncpdhbkhn 72
Allpass Systems (1)
( )
jH e Gω =
( )
k
allpassH z Gz
−
=
1
1
1 1
1
1 1
* *
( ) k kk
k k
p z z pH z z
p z p z
−
−
− −
− −
= =
− −
1
1
1 1
*
( )
N
j k
ap
k k
z pH z e
p z
β
−
−
=
−
=
−
∏ 0 1
Re
Im
O
Z
ω
kZ
k−Z Z
( )k ωΘ
×
kPkφ
k−Z P ( )k ωΦ
( )kα ω
1 1 1
1
*/
,
/
j
kk
kj
k kk
e p
p
pe p
ω
ω
−
−
= = <
− −
Z P
Z Z
2
2
1
2
1
1
1 2
( )
sin( )
( ) atan
cos( )
( )
cos( )
j
k
j k k
k
k k
k
k
k k k
H e
rH e
r
r
r r
ω
ω ω φω
ω φ
τ ω
ω φ
=
−∠ = − −
− −
−
=
+ − −
sites.google.com/site/ncpdhbkhn 73
Allpass Systems (2)
1 6
6 1
0 7
1 0 7
/
/
.
( )
.
j
k j
z eH z
e z
pi
pi
− −
−
−
=
−
Ex. 1
-3 -2 -1 0 1 2 3
1
1
1
1
1
omega (rad)
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
omega (rad)
P
h
a
s
e
(
r
a
d
)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
sites.google.com/site/ncpdhbkhn 74
Allpass Systems (3)
1
1
0 7
1 0 7
.
( )
.
k
zH z
z
−
−
−
=
−
Ex. 2
-1 -0.5 0 0.5 1 1.5
-1
-0.5
0
0.5
1
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
-3 -2 -1 0 1 2 3
1
1
1
1
1
omega (rad)
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
omega (rad)
P
h
a
s
e
(
r
a
d
)
sites.google.com/site/ncpdhbkhn 75
Allpass Systems (4)
1
1
0 7
1 0 7
.
( )
.
k
zH z
z
−
−
+
=
+
Ex. 3
-1.5 -1 -0.5 0 0.5 1
-1
-0.5
0
0.5
1
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
-3 -2 -1 0 1 2 3
1
1
1
1
1
omega (rad)
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
omega (rad)
P
h
a
s
e
(
r
a
d
)
sites.google.com/site/ncpdhbkhn 76
Allpass Systems (5)
1 6 1 6
6 1 6 1
0 7 0 7
1 0 7 1 0 7
/ /
/ /
. .
( )
. .
j j
k j j
z e z eH z
e z e z
pi pi
pi pi
− − −
− − −
− −
= ×
− −
Ex. 4
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
7
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
-3 -2 -1 0 1 2 3
1
1
1
1
1
omega (rad)
M
a
g
n
i
t
u
d
e
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
omega (rad)
P
h
a
s
e
(
r
a
d
)
sites.google.com/site/ncpdhbkhn 77
Allpass Systems (6)
1
1
1 1
*
( )
N
j k
ap
k k
z pH z e
p z
β
−
−
=
−
=
−
∏
2 0,N β= =
1 2 2
22 1 1 2
1 2 1 2
1 2 1 2
1
1 1
* * * *
( )
ap
a a z z a z a zH z z
a z a z a z a z
− −
−
− − − −
+ + + +
→ = =
+ + + +
1 1 2 2 1 2( );a p p a p p= − + =
1
1
1
1 1
1
* * * *... ( / )
( )
... ( )
N
N NN
ap N
N
a z a z A zH z z z
a z a z A z
− −
− −
+ + +
= =
+ + +
sites.google.com/site/ncpdhbkhn 78
Allpass Systems (7)
1
1 1
( )
D
k D
z aH z
az
a
−
−
−
=
−
− < <
Ex. 5
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2
4
6
8
10
12
14
16
18
20
22
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
- 3 -2 -1 0 1 2 3
1
1
1
1
1
omega (rad)
M
a
g
n
i
t
u
d
e
0 5 10 15 20 25 30 35 40 45 50
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
n (samples)
A
m
p
l
i
t
u
d
e
Impulse Response
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
sites.google.com/site/ncpdhbkhn 79
sites.google.com/site/ncpdhbkhn 80
Invertibility and Minimum –
Phase Systems (1)
An LTI system H(z) with input x[n] and output y[n] is said to be invertible
if we can uniquely determine x[n] from y[n]
[ ]* [ ] [ ]invh n h n nδ=
1( ) ( )invH z H z =
1
1
1
( )
( )
( )
M
k
k
k
N
k
k
k
b z
B zH z
A z
a z
−
=
−
=
= =
+
∑
∑
1 ( )
( )
( ) ( )
inv
A zH z
H z B z
→ = =
- A causal and stable system H(z) with a causal and stable invers Hinv(z)
is known as a minimum – phase system
- H(z) is minimum – phase if both its poles & zeros are inside the unit circle
sites.google.com/site/ncpdhbkhn 81
Invertibility and Minimum –
Phase Systems (2)
1
1 1
*( ) ( )( ),H z H z z a a−= − <
1
1
1 11 1
*( )
( )( )
( )
z aH z az
az
−
−
−
−
= −
−
1( ) is minimum phaseH z
11( ) is minimum phaseaz−−
1
1 1( ) ( )( ) is minimum phaseminH z H z az
−→ = −
1
1 is allpass1
*
( )
allpass
z aH z
az
−
−
−
=
−
( ) ( ) ( )
min apH z H z H z→ =
sites.google.com/site/ncpdhbkhn 82
Invertibility and Minimum –
Phase Systems (3)
1
1
1 1 0 1
1
azH z a b
bz
−
−
+
= > < <
+
( ) , ,
Ex. 1
1 1
11
( )
z aH z a
bz
− −
−
+
=
+
1 1 1 1
1 1 1
1
1 1
z a a z
a
bz a z
− − − −
− − −
+ +
= ×
+ +
1 1 1 1
1 1 1
1
1 1
( ) ( )min apH z H z
a z z a
a
bz a z
− − − −
− − −
+ +
= ×
+ +
We can obtain the minimum – phase system by replacing each factor (1 + az–1)
(|a| > 1), by a factor of the form a(1 + a–1z–1)
sites.google.com/site/ncpdhbkhn 83
Invertibility and Minimum –
Phase Systems (4)
1 11 1 1 1( ) ( )( ), ,minH z az bz a b
− −
= − − − < <
Ex. 2
1 1 1
1
1 1 1
2
1 1 1 1
1 1
1 1
1 1
( ) ( )( )
( ) ( )( )
( ) ( )( )
mix
mix
max
H z a a z bz
H z b az b z
H z ab a z b z
− − −
− − −
− − − −
= − −
= − −
= − −
-1 -0.5 0 0.5 1
-1
-0.5
0
0.5
1
2
Real Par t
I
m
a
g
i
n
a
r
y
P
a
r
t
Hmin
-1 0 1 2 3
-1.5
-1
-0.5
0
0.5
1
1.5
2
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
Hmix1
-1 -0.5 0 0.5 1 1.5
-1
-0.5
0
0.5
1
2
Real Par t
I
m
a
g
i
n
a
r
y
P
a
r
t
Hmix2
-1 0 1 2 3
-1.5
-1
-0.5
0
0.5
1
1.5
2
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
Hmax
sites.google.com/site/ncpdhbkhn 84
Invertibility and Minimum –
Phase Systems (5)
1 11 1 1 1( ) ( )( ), ,minH z az bz a b
− −
= − − − < <
Ex. 2
1 1 1
1
1 1 1
2
1 1 1 1
1 1
1 1
1 1
( ) ( )( )
( ) ( )( )
( ) ( )( )
mix
mix
max
H z a a z bz
H z b az b z
H z ab a z b z
− − −
− − −
− − − −
= − −
= − −
= − −
-3 -2 -1 0 1 2 3
0.5
1
1.5
2
Magnitude
omega (rad)
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
Phase
omega (rad)
Hmin
Hmix1
Hmix2
Hmax
sites.google.com/site/ncpdhbkhn 85
Invertibility and Minimum –
Phase Systems (6)
1 11 1 1 1( ) ( )( ), ,minH z az bz a b
− −
= − − − < <
Ex. 2
1 1 1
1
1 1 1
2
1 1 1 1
1 1
1 1
1 1
( ) ( )( )
( ) ( )( )
( ) ( )( )
mix
mix
max
H z a a z bz
H z b az b z
H z ab a z b z
− − −
− − −
− − − −
= − −
= − −
= − −
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-4
-3
-2
-1
0
1
2
3
4
5
6
Normalized Frequency (×pi rad/sample)
G
r
o
u
p
d
e
l
a
y
(
s
a
m
p
l
e
s
)
Hmin
Hmix1
Hmix2
Hmax
sites.google.com/site/ncpdhbkhn 86
Invertibility and Minimum –
Phase Systems (7)
1 1
1 1 1 1
1 1 1 1
1 1
( ) ( )( ), ,
( ) ( )( )
min
max
H z az bz a b
H z ab a z b z
− −
− − − −
= − − − < <
= − −
2 1( ) ( / )max minH z z H z
−→ =
1
11( ) ...
N
min NA z a z a z
− −
= + + +
1
1 1
* * * *
( ) ... ( / )
N N
max N N minA z a a z z z A z
− − −
−
→ = + + + =
sites.google.com/site/ncpdhbkhn 87
Invertibility and Minimum –
Phase Systems (8)
( )distortionH z
( ) ( ) ( )
( )
delay
delay
n
n
distortion equalizer equalizer
distortion
GzH z H z Gz H z
H z
−
−
= → =
( )
( )
delayn
equalizer
min
GzH z
H z
−
=
( ) ( ) ( )distortion min allpassH z H z H z=
( )
( )
delayn
allpass
equalizer
distortion
GH z
H z
H z
−
→ =
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
a) System Function and Frequency Response
b) The Laplace Transform
c) Systems with Rational System Functions
d) Frequency Response from Pole – Zero Location
e) Minimum – Phase and Allpass Systems
f) Ideal Filters
sites.google.com/site/ncpdhbkhn 88
sites.google.com/site/ncpdhbkhn 89
System Function and
Frequency Response
all[ ] [ ] ( ) ,n j n j n j nx n r e y n H re r e nω ω ω= → =
( ) [ ]
j n j n
n
H re h n r eω ω
∞
− −
=−∞
= ∑
all( )( ) ,j t stx t e e tσ + Ω= =
( ) ( ) ( )y t h x t dτ τ τ
∞
−∞
= −∫
( )
( ) ( )
s t st sh e d e h e dτ ττ τ τ τ
∞ ∞
− −
−∞ −∞
= =∫ ∫
all( ) ( ) ( ) ,st stx t e y t H s e t= → =
( ) ( )
sH s h e dττ τ
∞
−
−∞
= ∫
sites.google.com/site/ncpdhbkhn 90
The Laplace Transform (1)
( ) ( ) stX s x t e dt
∞
−
−∞
= ∫
( ) ( )
t j tX j x t e e dtσσ ∞ − − Ω
−∞
+ Ω = ∫
sites.google.com/site/ncpdhbkhn 91
The Laplace Transform (2)
Ex. 1
Find the Laplace transform of x(t) = e–atu(t), a > 0.
( ) ( )
stX s x t e dt
∞
−
−∞
= ∫ 0 0
( )at st a s te e dt e dt
∞ ∞
− − − +
= =∫ ∫
0
( )s a te
s a
∞
− +
= −
+
1 10
s a s a
−
= − =
+ +
0
0( ) Re{ }a te dt a s aσ σ
∞
− + → > −∫
1 ROC( ) ( ) ( ) , : Re{ }atx t e u t X s s a
s a
−
= ↔ = ≥ −
+
Im{ }s
Re{ }s
a− 0
Re{ }s a> −
sites.google.com/site/ncpdhbkhn 92
The Laplace Transform (3)
Ex. 2
Find the Laplace transform of x(t) = cos(Ω0t)u(t).
( ) ( )
stX s x t e dt
∞
−
−∞
= ∫ 00 cos( )
stt e dt
∞
−
= Ω∫
0 0
0
1
2
( )
j t j t st
e e e dt
∞ Ω − Ω −
= +∫
0 0
0
1
2
( ) ( )
[ ]
s j t s j t st
e e e dt
∞
− + Ω − − Ω −
= +∫
0 0
0 0 0
1
2
( ) ( )s j s j
t
e e
s j s j
∞
− + Ω − − Ω
=
−
= + + Ω − Ω
2 2
0 0 0
1 1 1
2
s
s j s j s
= + = + Ω − Ω +Ω
Im{ }s
Re{ }s
0
Re{ }s a> −
00 0
0 0cos( ) Re{ }st tt e dt e dt sσ σ
∞ ∞
− −Ω ≤ → >∫ ∫
0 2 2
0
ROC 0( ) cos( ) ( ) ( ) , : Re{ }sx t t u t X s s
s
= Ω ↔ = >
+Ω
sites.google.com/site/ncpdhbkhn 93
The Laplace Transform (4)
1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )x t a x t a x t X s a X s a X s= + ↔ = +
( ) ( )sx t e X sττ −− ↔
( ) * ( ) ( ) ( )h t x t H s X s↔
( )
( ) ( ) ( )
t X sy t x d Y s
s
τ τ
−∞
= ↔ =∫
( )
( ) ( ) ( )
dx ty t Y s sX s
dt
= ↔ =
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
a) System Function and Frequency Response
b) The Laplace Transform
c) Systems with Rational System Functions
d) Frequency Response from Pole – Zero Location
e) Minimum – Phase and Allpass Systems
f) Ideal Filters
sites.google.com/site/ncpdhbkhn 94
sites.google.com/site/ncpdhbkhn 95
Systems with Rational System
Functions (1)
0 0
( ) ( )k kN M
k kk k
k k
d y t d x t
a b
dt dt
= =
=∑ ∑
( )
( )
N
N
n
d f t
s F s
dt
↔
0 1 0 1( ... ) ( ) ( ... ) ( )
N M
N Ma a s a s Y s b b s b s X s→ + + + = + + +
0 1
0 1
...( ) ( )
( )
( ) ... ( )
M
M
N
N
b b s b sY s B sH s
X s a a s a s A s
+ + +
→ = = =
+ + +
1 2
1 2
( )( )...( )
( )( )...( )
M M
N N
b s z s z s z
a s p s p s p
− − −
= ×
− − −
sites.google.com/site/ncpdhbkhn 96
Systems with Rational System
Functions (2)
1 2
1 2
( )( )...( )
( )
( )( )...( )
M M
N N
b s z s z s zH s
a s p s p s p
− − −
= ×
− − −
1 2
1 2
... N
N
KK K
s p s p p p
= + + +
− − −
12 1
1 1
2
( )( )
( ) ( ) ... N
N
K s pK s p
s p H s K
s p p p
−−
→ − = + + +
− −
1 2
1
( )( )...( )
( )
M M
N
b s z s z s z
a s p
− − −
→ ×
−
12 1
1
22
( )( )
...
( )...( )
N
NN
K s pK s pK
s p p ps p s p
−−
= + + +
− −− −
1 2
1
( )( )...( )
( )
M M
N
b s z s z s z
a s p
− − −
→ ×
−
1 11
12 1
1
22
( )( )
...
( )...( )
N
NN s p s ps p
K s pK s pK
s p p ps p s p
= =
=
−−
= + + +
− −− −
1 2
1
1
( )( )...( )
( )
M M
N
b s z s z s zK
a s p
− − −
→ = ×
−
1
2( )...( )N
s p
s p s p
=
− −
sites.google.com/site/ncpdhbkhn 97
Systems with Rational System
Functions (3)
1 2
1 2
( )( )...( )
( )
( )( )...( )
M M
N N
b s z s z s zH s
a s p s p s p
− − −
= ×
− − −
1 2
1
1
( )( )...( )
( )
M M
N
b s z s z s zK
a s p
− − −
= ×
−
1
2( )...( )N
s p
s p s p
=
− −
1 2
1 2
( )( )...( )
( )( )... ( )
M M
k
N k
b s z s z s zK
a s p s p s p
− − −
= ×
− − − ...( )
k
N
s p
s p
=
−
( )at
K Ke u t
s a
↔
−
1
( ) ( )k
N
p t
k
k
h t K e u t
=
→ =∑
1
1
0
( )
( ) is stable Re{ } , all
( )
M
k
kM
k kN
N
k
k
s z
bH s p k
a
s p
σ=
=
−
= × ⇔ = <
−
∏
∏
sites.google.com/site/ncpdhbkhn 98
Systems with Rational System
Functions (4)
2
3 2
3 2
8 29 52
( )
s sH s
s s s
− +
=
+ + +
Ex.
3 2
1 2 38 29 52 0 4 2 3,,s s s s s j+ + + = → = − = − ±
2
31 23 2
4 2 3 2 3 4 2 3 2 3
( )
( )( )( )
Ks s K KH s
s s j s j s s j s j
− +
= = + +
+ + − + + + + − + +
2
1
3 2
4( )
s sK
s
− +
=
+
2
4
4 3 4 2 2 3077
4 2 3 4 2 32 3 2 3
( ) ( )
.
( )( )( )( )
s
j js j s j
=−
− − − +
= =
− + − − + ++ − + +
2
2
3 2
4 2 3( ) ( )
s sK
s s j
− +
=
+ + −
2 3
0 6538 0 7308 0 9806 2 3007
2 3
. . . .
( )
s j
j
s j
=− +
= − + = ∠
+ +
2
3
3 2
4 2 3 2 3( )( ) ( )
s sK
s s j s j
− +
=
+ + − + +
2 3
0 6538 0 7308 0 9806 2 3007. . . .
s j
j
=− −
= − − = ∠ −
2 3077 0 9806 2 3007 0 9806 2 3007
4 2 3 2 3
. . . . .
( )H s
s s j s j
∠ ∠−
= + +
+ + − + +
sites.google.com/site/ncpdhbkhn 99
Systems with Rational System
Functions (4)Ex.
4 2 3 2 32 3077 0 9806 2 3007 0 9806 2 3007( ) ( )( ) . ( . . ) ( . . )t j t j th t e e e− − − − +→ = + ∠ + ∠ −
4 2 3007 2 3 2 3007 2 32 3077 0 9806 0 9806. ( ) . ( ). ( ) . ( ) . ( )t j j t j j te u t e e u t e e u t− − − − − += + +
4 2 3 2 3007 3 2 30072 3077 0 9806 ( . ) ( . ). ( ) . [ ] ( )t t t te u t e e e u t− − + − += + +
2
3 2
3 2
8 29 52
( )
s sH s
s s s
− +
=
+ + +
2 3077 0 9806 2 3007 0 9806 2 3007
4 2 3 2 3
. . . . .
s s j s j
∠ ∠−
= + +
+ + − + +
4 22 3077 0 9806 2 3 2 3007. ( ) . [ cos( . )] ( )t te u t e t u t− −= + +
4 22 3077 1 9612 3 2 3007[ . . cos( . )] ( )t te e t u t− −= + +
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
a) System Function and Frequency Response
b) The Laplace Transform
c) Systems with Rational System Functions
d) Frequency Response from Pole – Zero Location
e) Minimum – Phase and Allpass Systems
f) Ideal Filters
sites.google.com/site/ncpdhbkhn 100
sites.google.com/site/ncpdhbkhn 101
Frequency Response from
Pole – Zero Location (1)
0 0 1
0
0 1
( )
( )
( )
M M
k
k k
k k
N N
k
k k
k k
b s s zbH s
a
a s s p
= =
= =
−
= = ×
−
∑ ∏
∑ ∏
0 0 1
0
0 1
( ) ( )
( ) ( )
( ) ( )
M M
k
k k
k k
N Ns j
k
k k
k k
b j j zbH j H s
a
a j j p
= =
= Ω
= =
Ω Ω−
Ω = = = ×
Ω Ω −
∑ ∏
∑ ∏
;k k
j j
k k k kj z Q e j p R eΘ ΦΩ − = Ω − =
0 1
0 0
1 10
1
M
k M N
k
k kN
k k
k
k
Q jbH j j b a j j
a R j
=
= =
=
Ω
→ Ω = ∠ + Θ Ω − Φ Ω
Ω
∏
∑ ∑
∏
( )
( ) exp ( / ) ( ) ( )
( )
sites.google.com/site/ncpdhbkhn 102
Frequency Response from
Pole – Zero Location (2)
0 1
0 0
1 10
1
( )
( ) exp ( / ) ( ) ( )
( )
M
k M N
k
k kN
k k
k
k
Q jbH j j b a j R j
a R j
=
= =
=
Ω
Ω = ∠ + Θ Ω − Ω
Ω
∏
∑ ∑
∏
0
0
0 0
Product of zero vectors to
Product of pole vectors to
Sum of zero angles to
Sum of pole angles to
b s jH j
a s j
H j b a s j
s j
= ΩΩ = ×
= Ω→
∠ Ω = ∠ + = Ω −
− = Ω
( )
( ) ( / ) ( )
( )
sites.google.com/site/ncpdhbkhn 103
Frequency Response from
Pole – Zero Location (3)
( )
GH s
s a
=
+
( )
GH j j aΩ = Ω +
jΩ
σ0s a= −
×
L
P φ
2 2
( )
G G G
H j j a PLa
Ω = = =
Ω + Ω +
( ) ( )
atan
H j G j a
G
a
φ
∠ Ω =∠ −∠ Ω+
Ω
= ∠ −
= −
sites.google.com/site/ncpdhbkhn 104
Frequency Response from
Pole – Zero Location (4)
2
2 22
( ) n
n n
H s
s sζ
Ω
=
+ Ω +Ω
2 22 4 0 1 1If ( )n nζ ζΩ − Ω < ↔ − < <
2
1 2then 1, n np j jζ ζ α β= − Ω ± Ω − = − ±
( )22 1 0 11( ) sin ( ),nn nh t e t u tζ ζ ζζ − ΩΩ → = Ω − < < −
sites.google.com/site/ncpdhbkhn 105
Frequency Response from
Pole – Zero Location (5)
2 2 2 2
1 2
2 2 2 21( ) ( )
n n n
p p α β
ζ ζ
= = +
= − Ω + Ω − = Ω
2 2 2
2 2
1 22
( )
( )( ) ( )( )
n n n
n n
H s
s s s p s p s j s jζ α β α β
Ω Ω Ω
= = =
+ Ω +Ω − − + − + +
2
1 2 1, n np j jζ ζ α β= − Ω ± Ω − = − ±
2 2
1 2 1 2
( ) n nH j
s p s p PL P L
Ω ΩΩ = =
− − ×
2
1 2
1 2
( ) ( ) ( )
n
H j s p s p
φ φ
∠ Ω =∠Ω −∠ − −∠ −
= − −
jΩ
σ0
1P
α−
β×
×2P β−
1s p−
n
−Ω
2s p−
1φ
1φ
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
a) System Function and Frequency Response
b) The Laplace Transform
c) Systems with Rational System Functions
d) Frequency Response from Pole – Zero Location
e) Minimum – Phase and Allpass Systems
f) Ideal Filters
sites.google.com/site/ncpdhbkhn 106
sites.google.com/site/ncpdhbkhn 107
Minimum – Phase
and Allpass Systems (1)
2 *( ) ( ) ( )H j H j H jΩ = Ω Ω
*
( ) ( )H j H jΩ = − Ω
( ) ( )
s jH s H j= Ω = Ω
2
( ) ( ) ( )
s jH j H s H s = Ω→ Ω = −
jΩ
σ01P
×
L j= Ω
1Z
α
( )
minH j α∠ Ω =
jΩ
σ01P
×
L j= Ω
1Z
β
( )H j β∠ Ω =
-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3
Ω (rad)
∠
H
(
j
Ω
)
Hmin
H
sites.google.com/site/ncpdhbkhn 108
Minimum – Phase
and Allpass Systems (2) jΩ
σ0kP
×
L j= Ω
kZ
α
( )
allpassH j α∠ Ω =
kΦ
kΘkR kQ
s a= − s a=
( ) k
k
s zH s
s p
−
=
−
for all, ,k k k kR Q pi= Φ +Θ = Ω
,k k k k k ks p R s z Q− = ∠Φ − = ∠Θ
1 allpass system( ) ( )k k
k k
s z RH j
s p Q
−
Ω = = =
−
( ) ( ) ( )k k k kH j s z s p α∠ Ω = ∠ − −∠ − = = Θ −Φ
2 2atank
a
pi pi
Ω
= − Φ = −
1( )H j αΩ = ∠
sites.google.com/site/ncpdhbkhn 109
Minimum – Phase
and Allpass Systems (3)
*
*
( )( )
( )
( )( )
k k
k k
s z s zH s
s p s p
− −
=
− −
* *
,k k k kR Q R Q= =
,k k k k k ks p R s z Q− = ∠Φ − = ∠Θ
jΩ
σ0
kP
L j= Ω kZ
α
×
kΦ kΘβ
kQ
a− a
×
*
kP
*
kZ
b
b−
*
kΦ
*
kΘ
*
kQ
kR
*
kR
* * * * * *
,k k k k k ks p R s z Q− = ∠Φ − = ∠Θ
1 allpass system
*
*
*
*
( )
( )
k k
k k
k k
k k
s z s z
H j
s p s p
Q Q
R R
− −
Ω =
− −
= =
* *
* *
( ) ( ) ( ) ( ) ( )k k k k
k k k k
H j s z s z s p s p∠ Ω = ∠ − +∠ − −∠ − −∠ −
= Θ + Θ −Φ −Φ
Minimum – Phase
and Allpass Systems (4)
An Nth order allpass system has the
following properties:
1. The zeros and poles are symmetric with
respect to the jΩ axis, that is, if the poles
are pk, then the zeros are . Therefore,
the system function is:
2. The phase response is monotonically
decreasing from 2πN to zero as Ω increases
from –∞ to ∞.
sites.google.com/site/ncpdhbkhn 110
1
1
* *
*
( )...( )
( )
( )...( )
N
N
s p s pH s
s p s p
+ −
=
− −
jΩ
σ0
kP
L j= Ω kZ
α
×
kΦ kΘβ
kQ
a− a
×
*
kP
*
kZ
b
b−
*
kΦ
*
kΘ
*
kQ
kR
*
kR
*
kp−
Minimum – Phase
and Allpass Systems (5)
The process of decomposing a nonminimum –
phase into a product of a minimum – phase and an
allpass system function
1. For each zero in the right – half plane, include a pole
and a zero at its mirror position in the left half plane.
2. Assign the left – half plane zeros and the original
poles to Hmin(s).
3. Assign the right – half plane zeros and the left – half
plane poles introduced in step 1 to Hallpass(s).
sites.google.com/site/ncpdhbkhn 111
( ) ( ) ( )
min allpassH s H s H s=
Transform Analysis
of LTI Systems
1. Sinusoidal Response of LTI Systems
2. Response of LTI Systems in the Frequency Domain
3. Distortion of Signals Passing through LTI Systems
4. Ideal and Practical Filters
5. Frequency Response for Rational System Functions
6. Dependency of Frequency Response on Poles and Zeros
7. Design of Simple Filters by Pole – Zero Placement
8. Relationship between Magnitude and Phase Responses
9. Allpass Systems
10. Invertibility and Minimum – Phase Systems
11. Transform Analysis of Continuous – Time Systems
a) System Function and Frequency Response
b) The Laplace Transform
c) Systems with Rational System Functions
d) Frequency Response from Pole – Zero Location
e) Minimum – Phase and Allpass Systems
f) Ideal Filters
sites.google.com/site/ncpdhbkhn 112
sites.google.com/site/ncpdhbkhn 113
Ideal Filters
( ) ( )dy t Gx t t= −
( ) d
j tH j Ge− ΩΩ =
0 otherwise
,
( )
,
dj t
c
lowpass
e
H j
− Ω Ω ≤ ΩΩ =
sin ( )
( )
( )
c c d
lowpass
c d
t th t
t tpi
Ω Ω −
=
Ω −
Các file đính kèm theo tài liệu này:
- transform_analysis2014mk_6526.pdf