Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
a) Goertzel’s Algorithm
b) Chirp Transform Algorithm
c) Sliding DFT
sites.googl
123 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 766 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Signal processing - The discrete fourier transform, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
f Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 42
sites.google.com/site/ncpdhbkhn 43
Symmetry (1)
1 2 3 4 5 6 7 8
0
0.2
0.4
0.6
0.8
1
n
x
1
[
n
]
1 2 3 4 5 6 7 8
0
0.5
1
1.5
2
2.5
3
k
X
1
R
[
k
]
1 2 3 4 5 6 7 8
-2
-1
0
1
2
k
X
1
I
[
k
]
1 2 3 4 5 6 7
0
0.2
0.4
0.6
0.8
1
n
x
2
[
n
]
1 2 3 4 5 6 7
-1
0
1
2
3
k
X
2
R
[
k
]
1 2 3 4 5 6 7
-2
-1
0
1
2
k
X
2
I
[
k
]
sites.google.com/site/ncpdhbkhn 44
Symmetry (2)
0 1
0 1
[ ] [ ] [ ],
[ ] [ ] [ ],
R I
R I
x n x n jx n n N
X k X k jX k k N
2 21 1
0 0
1
[ ] [ ] , [ ] [ ]
N Nj kn j kn
N N
n k
X k x n e x n X k e
N
1
0
1
0
1
0
2 2 0
2 2 0
2 2 0
[ ] [ ]cos [ ]sin ,
[ ] [ ]sin [ ]cos ,
[ ] [ ]cos [ ]sin ,
[ ]
N
R R I
n
N
I R I
n
N
R R I
k
I
X k x n kn x n kn k N
N N
X k x n kn x n kn k N
N N
x n X k kn X k kn n N
N N
x k X
1
0
2 2 0[ ]sin [ ]cos ,
N
R I
k
k kn X k kn k N
N N
sites.google.com/site/ncpdhbkhn 45
Symmetry (3)
1
0
1
0
2 2 0
2 2 0
[ ] [ ]cos [ ]sin ,
[ ] [ ]sin [ ]cos ,
N
R R I
n
N
I R I
n
X k x n kn x n kn k N
N N
X k x n kn x n kn k N
N N
If is real, then 0[ ] [ ]Ix n x n
1 1
0 0
1 1
0 0
2 2
2 2
[ ] [ ]cos [ ]cos
[ ] [ ]sin [ ]sin
N N
R R
n n
N N
I R
n n
X k x n kn x n kn
N N
X k x n kn x n kn
N N
0 0
1 1
0 0
1 1
0 0
1 1
*
[ ],
[ ] [ ]
[ ],
,
[ ] [ ]
[ ],
[ ],
[ ] [ ]
[ ],
R
R R N
R
I I N
I
N
X k
X k X k
X N k k N
k
X k X k
X N k k N
X k
X k X k
X N k k N
sites.google.com/site/ncpdhbkhn 46
Symmetry (4)
0 1[ ] [ ] [ ],ce cox n x n x n n N
1 1
2
2 0 0
[ ] [ ][ ] [ ] ,
[ ] [ ]
[ ],
ce ceN
N
x n x N nx n x n n N
x n x n
x n
1 1
2
2 0 0
[ ] [ ][ ] [ ] ,
[ ] [ ]
,
co ceN
N
x n x N nx n x n n N
x n x n
n
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
a) Linearity
b) Periodic, Circular, and Modulo – N Operations
c) Symmetry
d) Circular Shift of a Sequence
e) Circular Convolution
f) Circular Correlation
g) DFT of Stretched and Sampled Sequences
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 47
sites.google.com/site/ncpdhbkhn 48
Circular Shift of a Sequence
0
n
[ ]x n
1N
0
n
[ ]x n
1N
0
n
2[ ] [ ] [ ] [ ]N Nz n z n p n x n
1N
0
n
2[ ] [ ]z n x n
1N
[ ] [ ]DFT kmNNNx n m W X k
[ ]
N
x n
1 0
1N
[ ]
N
x n m
1 01N
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
a) Linearity
b) Periodic, Circular, and Modulo – N Operations
c) Symmetry
d) Circular Shift of a Sequence
e) Circular Convolution
f) Circular Correlation
g) DFT of Stretched and Sampled Sequences
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 49
sites.google.com/site/ncpdhbkhn 50
Circular Convolution (1)
[ ] [ ] [ ] ( ) ( ) ( )DTFT j j j
m
y n h m x n m Y e H e X e
0 1[ ] [ ] [ ],Y k H k X k k N
1 1 1 1
0 0 0 0
1 1 1
0 0 0
1 1
1 1
N N N N
kn km kl kn
N N N N
k k m l
N N N
k m l n
N
m l k
H k X k W h m W x l W W
N N
h m x l W
N N
( )
[ ] [ ] [ ] [ ]
[ ] [ ]
1
0
11
0 otherwise
( ) ,
,
N
k m l n
N
k
m l n rN
W
N
modulo( )
N
m l n rN l n m rN n m N n m
1 1
0 0
[ ] [ ] [ ] [ ] [ ]
N N
N
m m
y n h m x n m h m x n m
1
0
1 N kn
N
k
y n Y k W
N
[ ] [ ]
sites.google.com/site/ncpdhbkhn 51
Circular Convolution (2)
1 1
0 0
[ ] [ ] [ ] [ ] [ ]
N N
N
m m
y n h m x n m h m x n m
[ ] [ ] [ ]y n h n x n N
[ ] [ ] [ ] [ ] [ ] [ ]DFTNy n h n x n Y k H k X k N
0n
x[2]
x[3]x[4]
x[5]
[ ]x n
0n
x[0]
x[1]x[2]
x[3]
8
2[ ]x n
Circular mapping
0n
x[2]
x[3]x[4]
x[5]
8
2[ ]x n
Circular addressing
sites.google.com/site/ncpdhbkhn 52
Circular Convolution (3)
Ex. 3
1 2 3 4 0 1 2 3[ ] { }, [ ] { }.h n x n [ ] [ ] [ ].y n h n x n NGiven Find
1
0
[ ] [ ] [ ]
N
N
m
y n h m x n m
0[ ]h
1[ ]h2[ ]h
3[ ]h
x[0]
x[3]x[2]
x[1] 1
03
2 2
10
3 3
21
0
0 0 0 1 3 2 2 3 1
1 0 2 3 3 2 4 1 16
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
1 0 1 1 0 2 3 3 2
1 1 2 0 3 3 4 2 18
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
2 0 2 1 1 2 0 3 3
1 2 2 1 3 0 4 3 16
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
3 0 3 1 2 2 1 3 0
1 3 2 2 3 1 4 0 10
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
0n 123
Method 1
sites.google.com/site/ncpdhbkhn 53
Circular Convolution (4)
Ex. 3
1 2 3 4 0 1 2 3[ ] { }, [ ] { }.h n x n [ ] [ ] [ ].y n h n x n NGiven Find
0 0 0 1 3 2 2 3 1 1 0 2 3 3 2 4 1 16[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
1 0 1 1 0 2 3 3 2 1 1 2 0 3 3 4 2 18[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
2 0 2 1 1 2 0 3 3 1 2 2 1 3 0 4 3 16[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
3 0 3 1 2 2 1 3 0 1 3 2 2 3 1 4 0 10[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]y h x h x h x h x
0 0 3 2 1 0
1 1 0 3 2 1
2 2 1 0 3 2
3 3 2 1 0 3
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
y x x x x h
y x x x x h
y x x x x h
y x x x x h
sites.google.com/site/ncpdhbkhn 54
Circular Convolution (5)
Ex. 3
1 2 3
4 4 4
2 2
4 4
3 2 1
4 4 4
1 1 1 10 0 1 1 1 1 0 6
11 1 1 1 1 2 2
1 12 2 1 1 1 1 2 2
13 3 1 1 3 2 2
[ ]
[ ]
[ ]
[ ]
X
W W WX j j j
W WX
W W WX j j j
1 2 3 4 0 1 2 3[ ] { }, [ ] { }.h n x n [ ] [ ] [ ].y n h n x n NGiven Find
Method 2[ ] [ ] [ ] [ ] [ ] [ ]DFTNy n h n x n Y k H k X k N
1 2 3
4 4 4
2 2
4 4
3 2 1
4 4 4
1 1 1 10 0 1 1 1 1 1 10
11 1 1 1 2 2 2
1 12 2 1 1 1 1 3 2
13 3 1 1 4 2 2
[ ]
[ ]
[ ]
[ ]
H
W W WH j j j
W WH
W W WH j j j
sites.google.com/site/ncpdhbkhn 55
Circular Convolution (6)
Ex. 3
1 2 3 4 0 1 2 3[ ] { }, [ ] { }.h n x n [ ] [ ] [ ].y n h n x n NGiven Find
Method 2
6 2 2 2 2 2 10 2 2 2 2 2; ; ; ; ; ; ;j j j j X H
[ ] [ ] [ ] [ ] [ ] [ ]DFTNy n h n x n Y k H k X k N
0 0 0 6 10 60 1 8 2 4 3 8[ ] [ ] [ ] ; [ ] ; [ ] ; [ ]Y H X Y j Y Y j
0 1 1 1 1 0 1 1 1 1 60 16
1 1 1 1 1 1 8 101 1
4 42 1 1 1 1 2 1 1 1 1 4 16
3 1 1 3 1 1 8 18
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
y Y
y j j Y j j j
y Y
y j j Y j j j
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
a) Linearity
b) Periodic, Circular, and Modulo – N Operations
c) Symmetry
d) Circular Shift of a Sequence
e) Circular Convolution
f) Circular Correlation
g) DFT of Stretched and Sampled Sequences
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 56
sites.google.com/site/ncpdhbkhn 57
Circular Correlation
1
0
0 1[ ] [ ] [ ],
N
xy N
n
r l x n y n l l N
*[ ] [ ] [ ] [ ] [ ] [ ]DFTxy xyNNr l x n y n R k X k Y k N
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
a) Linearity
b) Periodic, Circular, and Modulo – N Operations
c) Symmetry
d) Circular Shift of a Sequence
e) Circular Convolution
f) Circular Correlation
g) DFT of Stretched and Sampled Sequences
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 58
sites.google.com/site/ncpdhbkhn 59
DFT of Stretched Sequences
0
n
[ ]x n
1N
( )[ ]Lx n
0
n
1L
0 2 1
0 otherwise
( ) [ / ], , , ,...,( )[ ]
,
L x n L n L L N Lx n
( )[ ] [ ] [ ]DFTL NL Nx n X k X k
1 1( )[ ] [ ] [ ]DFTL NLx n x n X kL L
sites.google.com/site/ncpdhbkhn 60
DFT of Sampled Sequences
0 1( )[ ] [ ],M
Nx n x nM n
M
1
0
1
( ) /
[ ]
M
DFT
M N M
m
Nx n X k m
M M
1
0
1
( )/
[ ]
M
DFT
MN M
m
Nx n m X k
M M
0
n
[ ]x n
1N
0
n
( )[ ]Mx n
sites.google.com/site/ncpdhbkhn 61
Properties of the DFT
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
a) Linear Convolution Using Circular Convolution
b) Implementation of FIR Filters Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 62
sites.google.com/site/ncpdhbkhn 63
Linear Convolution Using
Circular Convolution (1)
0 2[ ] [ ] [ ],
k
y n h k x n k n L M
( ) ( ) ( )j j jY e H e X e
2 0 1/[ ] ( ),j k NY k Y e k N
2 2/ /[ ] ( ), [ ] ( )j k N j k NH k H e X k X e
[ ] [ ] [ ] [ ] [ ] [ ]DFTzero padded zp zp Ny n h n x n Y k H k X k N
Pad with
(M – 1) zeros
[ ]x n
[ ]y n
[ ] [ ] [ ]Y k H k X k
Pad with
(L – 1) zeros
[ ]h n
N – point
IDFT
[ ]X k
[ ]H k
N – point
DFT
N – point
DFT
[ ]zpx n
[ ]zph n
Length
L
Length
M
Length
N
1N L M
sites.google.com/site/ncpdhbkhn 64
Linear Convolution Using
Circular Convolution (2)
0 2[ ] [ ] [ ],
k
y n h k x n k n L M
0 0 0 0
1 1 0 0
02 2 1 0
13 3 2 1
24 4 3 2
5 0 4 3
6 0 0 4
[ ] [ ]
[ ] [ ] [ ]
[ ][ ] [ ] [ ] [ ]
[ ][ ] [ ] [ ] [ ]
[ ][ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ]
y x
y x x
hy x x x
hy x x x
hy x x x
y x x
y x
0 0 0 4 3 2 1 0
1 0 0 0 4 3 2 1
2 1 0 0 0 4 3 2
3 2 1 0 0 0 4 0
4 3 2 1 0 0 0 0
0 4 3 2 1 0 0 0
0 0 4 3 2 1 0 0
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
x x x x x h
x x x x x h
x x x x x h
x x x x x
x x x x x
x x x x x
x x x x x
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
a) Linear Convolution Using Circular Convolution
b) Implementation of FIR Filters Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 65
Implementation of FIR Filters
Using the DFT (1)
• The input may have indefinite length
• The input’s length may be too large for storage &
computation
• The computation can not be started untill all input
signal samples have been collected delays
sites.google.com/site/ncpdhbkhn 66
Pad with
(M – 1) zeros
[ ]x n
[ ]y n
[ ] [ ] [ ]Y k H k X k
Pad with
(L – 1) zeros
[ ]h n
N – point
IDFT
[ ]X k
[ ]H k
N – point
DFT
N – point
DFT
[ ]zpx n
[ ]zph n
Length
L
Length
M
Length
N
1N L M
sites.google.com/site/ncpdhbkhn 67
Implementation of FIR Filters
Using the DFT (2)
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
3 0 2 1 0 0 0 0 0
4 0 0 2 1 0 0 0 0
5 0 0 0 2 1 0 0 0
6 0 0 0 0 2 1 0 0
7 0 0 0 0 0 2 1 0
8
9
[ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ]
[ ]
y h
y h h
y h h h
y h h h
y h h h
y h h h
y h h h
y h h h
y
y
0
1
2
3
4
5
6
0 0 0 0 0 0 2 1 7
0 0 0 0 0 0 0 2
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] [ ] [ ]
[ ]
x
x
x
x
x
x
x
h h x
h
The overlap – add method
sites.google.com/site/ncpdhbkhn 68
Implementation of FIR Filters
Using the DFT (3)
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
3 0 2 1 0 0 0 0 0
4 0 0 2 1 0 0 0 0
5 0 0 0 2 1 0 0 0
6 0 0 0 0 2 1 0 0
7 0 0 0 0 0 2 1 0
8
9
[ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ]
[ ]
y h
y h h
y h h h
y h h h
y h h h
y h h h
y h h h
y h h h
y
y
0
1
2
3
4
5
6
0 0 0 0 0 0 2 1 7
0 0 0 0 0 0 0 2
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] [ ] [ ]
[ ]
x
x
x
x
x
x
x
h h x
h
The overlap – add method
1
2
4 0 0 2 1
3
4
[ ]
[ ]
[ ] [ ] [ ] [ ]
[ ]
[ ]
x
x
y h h h
x
x
3
4
5 1 0 0 2
5
6
[ ]
[ ]
[ ] [ ] [ ] [ ]
[ ]
[ ]
x
x
y h h h
x
x
sites.google.com/site/ncpdhbkhn 69
Implementation of FIR Filters
Using the DFT (4)
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
3 0 2 1 0 0 0 0 0
4 0 0 2 1 0 0 0 0
5 0 0 0 2 1 0 0 0
6 0 0 0 0 2 1 0 0
7 0 0 0 0 0 2 1 0
8
9
[ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ]
[ ]
y h
y h h
y h h h
y h h h
y h h h
y h h h
y h h h
y h h h
y
y
0
1
2
3
4
5
6
0 0 0 0 0 0 2 1 7
0 0 0 0 0 0 0 2
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ] [ ] [ ]
[ ]
x
x
x
x
x
x
x
h h x
h
The overlap – save method
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
a) Effects of Time – Windowing on Sinusoidal Signals
b) Effects of Time – Windowing on Signals with Continuous Spectra
c) “Good” Window and the Uncertainty Principle
d) The Spectrogram
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 70
sites.google.com/site/ncpdhbkhn 71
Effects of Time – Windowing on
Sinusoidal Signals (1)
-6 -4 -2 0 2 4 6
-1
0
1
t
x
c
(
t
)
-6 -4 -2 0 2 4 6
0
0.5
1
t
w
c
(
t
)
-6 -4 -2 0 2 4 6
-1
0
1
t
w
c
(
t
)
x
c
(
t
)
01 0 2
0 otherwise
, /
( )
,c
t T
w t
ˆ ( ) ( ) ( )c c cx t w t x t
1 0 1
0 otherwise
,
[ ]
,
t L
w n
ˆ ˆ[ ] ( ) ( ) ( ) [ ] [ ]c c cx n x nT w nT x nT w n x n
sites.google.com/site/ncpdhbkhn 72
Effects of Time – Windowing on
Sinusoidal Signals (2)
Ideal A/D
( )cx t
[ ]w n
N – point
DFT
ˆ [ ]X k[ ]x n
1
s
T
F
ˆ[ ]x n
Ideal A/D
( )cx t
( )cw t
N – point
DFT
ˆ [ ]X kˆ ( )cx t
1
s
T
F
ˆ[ ]x n
sites.google.com/site/ncpdhbkhn 73
Effects of Time – Windowing on
Sinusoidal Signals (3)
1 1 1( ) cos( ),cx t A t t
1 1 1 1
1 1
1 1
2 2
j j t j j tA e e Ae e
1 1 1 1
1 1
1 1
2 2
ˆ ( ) ( ) ( ) ( ) ( )j j t j j tc c c c cx t w t x t Ae w t e Ae w t e
1 1
1 1 1 1
1 1
2 2
ˆ ( ) [ ( )] [ ( )]j jc c cX j Ae W j Ae W j
01 0
0 otherwise
,
( ) ( )
,c R
t T
w t w t
0 20 2
2
/sin( / )( ) ( )
/
j T
c R
TW j W j e
sites.google.com/site/ncpdhbkhn 74
Effects of Time – Windowing on
Sinusoidal Signals (4)
-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
-6 -4 -2 0 2 4 6
0
0.5
1
-6 -4 -2 0 2 4 6
0
0.5
1
-6 -4 -2 0 2 4 6
-1
0
1
2
3
-6 -4 -2 0 2 4 6
-1
0
1
2
3
-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
-6 -4 -2 0 2 4 6
-1
0
1
2
3
t
t
t
( )cx t
( )cw t
ˆ ( ) ( ) ( )c c cx t w t x t
1 1
( )cX j
( )cW j
0T
ˆ ( )cX j
sites.google.com/site/ncpdhbkhn 75
Effects of Time – Windowing on
Sinusoidal Signals (5)
0 2 4 6 8 10 12
-0.5
0
0.5
1
1.5
2
2.5
3
Wc(j( - 2))
Wc(j( - 1))
0 2 4 6 8 10 12
0
0.5
1
1.5
2
2.5
3
3.5
Wc(j( - 2)) + Wc(j( - 1))
2 1 0 0
0 2 1
2 1T
T F F
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
a) Effects of Time – Windowing on Sinusoidal Signals
b) Effects of Time – Windowing on Signals with Continuous Spectra
c) “Good” Window and the Uncertainty Principle
d) The Spectrogram
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 76
sites.google.com/site/ncpdhbkhn 77
Effects of Time – Windowing on
Signals with Continuous Spectra
-8 -6 -4 -2 0 2 4 6 8
-0.5
0
0.5
1
F (Hz)
M
a
g
n
i
t
u
d
e
Spectrum of rectangular window
-8 -6 -4 -2 0 2 4 6 8
0
0.5
1
F (Hz)
M
a
g
n
i
t
u
d
e
Spectrum of infinite duration signal
200 400 600 800 1000 1200 1400 1600
0
0.5
1
F (Hz)
M
a
g
n
i
t
u
d
e
Shifted copies of window spectrum
-8 -6 -4 -2 0 2 4 6 8
0
2
4
F (Hz)
M
a
g
n
i
t
u
d
e
Spectrum of windowed signal
1 1
2 2
( ) ( ) ( ( )) ( ) ( ( ))c c c c k c k
k
X j X j W j d X j W j
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
a) Effects of Time – Windowing on Sinusoidal Signals
b) Effects of Time – Windowing on Signals with Continuous Spectra
c) “Good” Window and the Uncertainty Principle
d) The Spectrogram
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 78
sites.google.com/site/ncpdhbkhn 79
“Good” Windows and
the Uncertainty Principle (1)
-6 -4 -2 0 2 4 6
-0.2
0
0.2
0.4
0.6
0.8
Smearing & leakage
sites.google.com/site/ncpdhbkhn 80
“Good” Windows and
the Uncertainty Principle (2)
1
( ) CTFTc c
jx at X
a a
0 0( ) cos[ ( )] cos[( ) ]cx at at a t
Time and frequency scaling property
Uncertainty principle
22 2 ( )t ct x t dt
22 21
2
( )cX j d
1
2t
sites.google.com/site/ncpdhbkhn 81
“Good” Windows and
the Uncertainty Principle (3)
-1.5 -1 -0.5 0 0.5 1 1.5
-0.2
0
0.2
0.4
0.6
0.8
WR(j)
-1.5 -1 -0.5 0 0.5 1 1.5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
WB(j) = [WR(j)]2
-1.5 -1 -0.5 0 0.5 1 1.5
2
4
6
8
10
12
t
wRectangular(t)
-1.5 -1 -0.5 0 0.5 1 1.5
2
4
6
8
10
12
t
wBartlett(t)
2
0
2
0
4 4
2
sin ( / )
( )
/Bartlett
TW j
T
sites.google.com/site/ncpdhbkhn 82
“Good” Windows and
the Uncertainty Principle (4)
-3 -2 -1 0 1 2 3
0
5
10
WRectangular(j)
100 200 300 400 500 600
0
2
4
6
.25WR(j( + 2/T0)
.25WR(j( - 2/T0)
0.5WR(j)
100 200 300 400 500 600
0
2
4
6
WHann(j)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0
100
200
300
400
500
600
t
wHann(t)
0
0
0 5
0 25 2
0 25 2
( ) . ( )
. ( ( / ))
. ( ( / ))
Hann Rectangular
Rectangular
Rectangular
W j W j
W j T
W j T
0
20 50 0 50( ) . . cos ( )Hann Rect
tw t w t
T
sites.google.com/site/ncpdhbkhn 83
“Good” Windows and
the Uncertainty Principle (5)
-3 -2 -1 0 1 2 3
0
5
10
WRectangular(j)
100 200 300 400 500 600
0
2
4
6
8
.23WR(j( + 2/T0)
.23WR(j( - 2/T0)
0.54WR(j)
100 200 300 400 500 600
0
2
4
6
8
WHann(j)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0
100
200
300
400
500
600
t
wHann(t)
0
0
0 54
0 23 2
0 23 2
( ) . ( )
. ( ( / ))
. ( ( / ))
Hamming Rectangular
Rectangular
Rectangular
W j W j
W j T
W j T
0
20 54 0 46( ) . . cos ( )Hamm Rect
tw t w t
T
sites.google.com/site/ncpdhbkhn 84
“Good” Windows and
the Uncertainty Principle (6)
sites.google.com/site/ncpdhbkhn 85
“Good” Windows and
the Uncertainty Principle (7)
100 200 300 400 500 600 700 800 900 1000
0.2
0.4
0.6
0.8
1
1.2
F (Hz)
A
m
p
l
i
t
u
d
e
Rectangular
100 200 300 400 500 600 700 800 900 1000
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
F (Hz)
A
m
p
l
i
t
u
d
e
Bartlett
100 200 300 400 500 600 700 800 900 1000
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
F (Hz)
A
m
p
l
i
t
u
d
e
Hann
100 200 300 400 500 600 700 800 900 1000
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
F (Hz)
A
m
p
l
i
t
u
d
e
Hamming
2 2 3 2 4( ) cos( ) cos( ) cos( )x t Ft Ft Ft Ex.
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
a) Effects of Time – Windowing on Sinusoidal Signals
b) Effects of Time – Windowing on Signals with Continuous Spectra
c) “Good” Window and the Uncertainty Principle
d) The Spectrogram
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 86
sites.google.com/site/ncpdhbkhn 87
The Spectrogram
1
2
0
( / )[ , ] [ ] [ ]
L
j k N m
m
X k n w m x n m e
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0
50
100
150
200
250
300
350
400
450
500
Time (Seconds)
F
r
e
q
u
e
n
c
y
(
H
z
)
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 88
sites.google.com/site/ncpdhbkhn 89
Direct Computation of
the Discrete – Fourier Transform
1
0
0 1 1[ ] [ ] , , ,...,
N
kn
N
n
X k x n W k N
1
0
1 0 1 1[ ] [ ] , , ,...,
N
kn
N
k
x n X k W n N
N
1
0
1
0
2 2
2 2
[ ] [ ]cos [ ]sin
[ ] [ ]sin [ ]cos
N
R R I
k
N
I R I
k
X k x n kn x n kn
N N
X k x n kn x n kn
N N
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The Fast Fourier Transform Idea Using a Matrix
Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 90
sites.google.com/site/ncpdhbkhn 91
The Fast Fourier Transform Idea
Using a Matrix Approach (1)
2 3 4 5 6 7
8 8 8 8 8 8 8
2 4 6 2 4 6
8 8 8 8 8 8
3 6 4 7 2 5
8 8 8 8 8 8 8
4 4 4 4
8 8 8 8
5 2 7 4 6 3
8 8 8 8 8 8 8
6 4 2 6 4 2
8 8 8 8 8 8
7 6 5 4 3
8 8 8 8 8
1 1 1 1 1 1 1 10
11
1 12
13
1 1 1 14
15
1 16
17
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
X
W W W W W W WX
W W W W W WX
W W W W W W WX
W W W WX
W W W W W W WX
W W W W W WX
W W W W WX
28 8
0
1
2
3
4
5
6
7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
x
x
x
x
x
x
W W x
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2 3 7 5
8 8 8 8 8 8 8
4 4 4 4
8 8 8 8
2 4 6 5 7 3
8 8 8 8 8 8 8
4 4 6 2 6 2
8 8 8 8 8 8
6 4 2 7 5 3
8 8 8 8 8 8 8
1 1 1 1 1 1 1 1 0
1 2
1 1 4
1 6
1 1 1 1 1
1 3
1 1
1
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
W W W W W W W x
W W W W W W x
W W W W W W W x
W W W W x
W W W W W W W x
W W W W W W x
W W W W W W W
5
7
[ ]
[ ]x
sites.google.com/site/ncpdhbkhn 92
The Fast Fourier Transform Idea
Using a Matrix Approach (2)
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2 3 7 5
8 8 8 8 8 8 8
4 4 4 4
8 8 8 8
2 4 6 5 7 3
8 8 8 8 8 8 8
4 4 6 2 6 2
8 8 8 8 8 8
6 4 2 7 5
8 8 8 8 8
1 1 1 1 1 1 1 10
11
1 12
13
1 1 1 14
15
1 16
17
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
X
W W W W W W WX
W W W W W WX
W W W W W W WX
W W W WX
W W W W W W WX
W W W W W WX
W W W W WX
38 8
0
2
4
6
1
3
5
7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
x
x
x
x
x
x
W W x
4
8
5
8 8
6 2
8 8
7 3
8 8
1W
W W
W W
W W
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
8
Real Part
I
m
a
g
i
n
a
r
y
P
a
r
t
0
8W
1
8W
2
8W
3
8W
4
8W
5
8W
6
8W
7
8W
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2 3 7 5
8 8 8 8 8 8 8
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2 3 7 5
8 8 8 8 8 8 8
1 1 1 1 1 1 1 1 0
1 2
1 1 4
1 6
1 1 1 1 1 1 1 1
1
1 1
1
[ ]
[ ]
[ ]
[ ]
x
W W W W W W W x
W W W W W W x
W W W W W W W x
x
W W W W W W W
W W W W W W
W W W W W W W
1
3
5
7
[ ]
[ ]
[ ]
[ ]
x
x
x
sites.google.com/site/ncpdhbkhn 93
The Fast Fourier Transform Idea
Using a Matrix Approach (3)
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2 3 7 5
8 8 8 8 8 8 8
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2
8 8 8
1 1 1 1 1 1 1 10
11
1 12
13
1 1 1 1 1 1 1 14
15
1 16
17
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
X
W W W W W W WX
W W W W W WX
W W W W W W WX
X
W W W W W W WX
W W W W W WX
W W W WX
3 7 58 8 8 8
0
2
4
6
1
3
5
7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
x
x
x
x
x
x
W W W x
2 3
84 4 4
4 8 22 2
84 4
33 2
84 4 4
1 0 0 01 1 1 1 0 1
0 0 01 2 3
0 0 01 1 4 5
0 0 01 6 7
0 1 2 3 4 5 6 7
[ ] [ ]
[ ] [ ]
; ; ;
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ] [ ] ; [ ] [ ] [ ] [ ]
Even Odd
T T
Top Bottom
x x
WW W W x x
WW W x x
WW W W x x
X X X X X X X X
W D X X
X X
4 8 4
4 8 4
Top Even
OddBottom
X W D W x
W D W xX
sites.google.com/site/ncpdhbkhn 94
The Fast Fourier Transform Idea
Using a Matrix Approach (4)
4 8 4
4 8 4
Top Even
OddBottom
X W D W x
W D W xX
2 22 / /
point DFT : &E N E O N O
N W X W x X x
T E N O
B E N O
X X D X
X X D X
N – point Input Sequence
N/2 – point
Sequence
N/2 – point
Sequence
N/2 – point
DFT
N/2 – point
DFT
Merge N/2 – point DFT
N – point DFT Coefficients
n Even n Odd
[ ]Ox n[ ]Ex n
[ ]EX k [ ]OX k
[ ]X k
N – point FFT
sites.google.com/site/ncpdhbkhn 95
The Fast Fourier Transform Idea
Using a Matrix Approach (5)
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2 3 7 5
8 8 8 8 8 8 8
2 4 6 3 5 7
8 8 8 8 8 8 8
4 4 2 6 2 6
8 8 8 8 8 8
6 4 2
8 8 8
1 1 1 1 1 1 1 10
11
1 12
13
1 1 1 1 1 1 1 14
15
1 16
17
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
X
W W W W W W WX
W W W W W WX
W W W W W W WX
X
W W W W W W WX
W W W W W WX
W W W WX
3 7 58 8 8 8
0
2
4
6
1
3
5
7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
x
x
x
x
x
x
W W W x
2 4 6 2 4 6
8 8 8 8 8 8
4 4 4 4
8 8 8 8
6 4 2 6 4 2
8 8 8 8 8 8
2 3 2 3
8 8 8 8 8 8
3 6 3 6
8 8 8 8 8 8
5 2 7 5 2 7
8 8 8 8 8 8
7 6 5
8 8 8
1 1 1 1 1 1 1 10
1 12
1 1 1 14
1 16
1 11
1 13
1 15
17
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
X
W W W W W WX
W W W WX
W W W W W WX
W W W W W WX
W W W W W WX
W W W W W WX
W W WX
7 6 58 8 8
0
1
2
3
4
5
6
1 7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
x
x
x
x
x
x
W W W x
4 4
4 8 4 8
E T
O B
X W W x
X W D W D x
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFTransform Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
a) Algebraic Derivation
b) Practical Programming Considerations
c) Alternative Forms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 96
sites.google.com/site/ncpdhbkhn 97
Algebraic Derivation (1)
1
0
0 1 1[ ] [ ] , , ,...,
N
kn
N
n
X k x n W k N
1 1
2 2
2 2 1
0 0
2 2 1( ) ( )[ ] [ ]
N N
k m k m
N N
m m
x m W x m W
1 1
2 2
2 2
0 0
2 2 1( ) ( )[ ] [ ]
N N
k m k k m
N N N
m m
x m W W x m W
2 0 1 2 2 1
2 1 0 1 2 2 1
[ ] [ ], , , ,..., /
[ ] [ ], , , ,..., /
a n x n n N
b n x n n N
2 1
2
0
2 1
2
0
0 1 1
0 1 2 1
0 1 2 1
/
/
/
/
[ ] [ ] [ ], , ,...,
[ ] [ ] , , ,..., /
[ ] [ ] , , ,..., /
k
N
N
km
N
m
N
km
N
m
X k A k W B k k N
A k a m W k N
B k b m W k N
2
2/N NW W
sites.google.com/site/ncpdhbkhn 98
Algebraic Derivation (2)
0 1 2 1[ ] [ ] [ ], , ,..., /kNX k A k W B k k N
2
2 2 2
Nk
N
N N NX k A k W B k
2
[ ] [ ]kN
NX k A k W B k
2
Nk
k
N NW W
0 1 1
2
0 1 1
2 2
k
N
k
N
NX k A k W B k k
N NX k A k W B k k
[ ] [ ] [ ], , ,...,
[ ] [ ], , ,...,
sites.google.com/site/ncpdhbkhn 99
Algebraic Derivation (3)
8DFT 0 1 2 3 4 5 6 7 0 7[ ] { [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]},X k x x x x x x x x k
Ex.
[ ]X k
4DFT 1 3 5 7 0 3[ ] { [ ], [ ], [ ], [ ]},B k x x x x k
4DFT 0 2 4 6 0 3[ ] { [ ], [ ], [ ], [ ]},A k x x x x k
2DFT 0 4 0 1[ ] { [ ], [ ]}, ,C k x x k
2DFT 2 6 0 1[ ] { [ ], [ ]}, ,D k x x k
2DFT 1 5 0 1[ ] { [ ], [ ]}, ,E k x x k
2DFT 3 7 0 1[ ] { [ ], [ ]}, ,F k x x k
2
8
2
8
0 1
2 0 1
[ ] [ ] [ ], ,
[ ] [ ] [ ], ,
k
k
A k C k W D k k
A k C k W D k k
2
8
2
8
0 1
2 0 1
[ ] [ ] [ ], ,
[ ] [ ] [ ], ,
k
k
B k E k W F k k
B k E k W F k k
8
8
0 1 2 3
2 0 1 2 3
[ ] [ ] [ ], , , ,
[ ] [ ] [ ], , , ,
k
k
X k A k W B k k
X k A k W B k k
sites.google.com/site/ncpdhbkhn 100
Algebraic Derivation (4)
8DFT 0 1 2 3 4 5 6 7 0 7[ ] { [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]},X k x x x x x x x x k
Ex.
2
8
2
8
0 1
2 0 1
[ ] [ ] [ ], ,
[ ] [ ] [ ], ,
k
k
A k C k W D k k
A k C k W D k k
1 1
1 1
r
m m N m
r
m m N m
X p X p W X q
X q X p W X q
[ ] [ ] [ ]
[ ] [ ] [ ]
1[ ]mX p
1[ ]mX q
[ ]mX p
[ ]mX q
r
NW
1
sites.google.com/site/ncpdhbkhn 101
Algebraic Derivation (5)
8DFT 0 1 2 3 4 5 6 7 0 7[ ] { [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]},X k x x x x x x x x k
Ex.
0
1
2
3
4
5
6
7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
x
x
x
x
x
x
x
x
0[ ]x
4[ ]x
2[ ]x
6[ ]x
1[ ]x
5[ ]x
3[ ]x
7[ ]x
Merge two
1 – point
DFTs
Merge two
1 – point
DFTs
Merge two
1 – point
DFTs
Merge two
1 – point
DFTs
Merge two
2 – point
DFTs
Merge two
4 – point
DFTs
Merge two
4 – point
DFTs
0
4
[ ]
[ ]
x
x
2
6
[ ]
[ ]
x
x
1
5
[ ]
[ ]
x
x
3
7
[ ]
[ ]
x
x
0
2
4
6
[ ]
[ ]
[ ]
[ ]
x
x
x
x
1
3
5
7
[ ]
[ ]
[ ]
[ ]
x
x
x
x
0
1
2
3
4
5
6
7
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
X
X
X
X
X
X
X
X
Algebraic Merging
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFTransform Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
a) Algebraic Derivation
b) Practical Programming Considerations
c) Alternative Forms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 102
sites.google.com/site/ncpdhbkhn 103
Practical Programming
Considerations
0[ ]x 0[ ]X
4[ ]x 1[ ]X
2[ ]x 2[ ]X
6[ ]x 3[ ]X
1[ ]x 4[ ]X
5[ ]x 5[ ]X
3[ ]x 6[ ]X
7[ ]x 7[ ]X
0
8W
0
8W
0
8W
0
8W
1
1
1
1
0[ ]C
1[ ]C
0[ ]D
1[ ]D
0[ ]E
1[ ]E
0[ ]F
1[ ]F
0[ ]A
1[ ]A
2[ ]A
3[ ]A
0[ ]B
1[ ]B
2[ ]B
3[ ]B
0
8W
2
8W
2
8W
0
8W
1
8W
0
8W
3
8W
2
8W
1
1
1
1
1
1
1
1
Stage 1 Stage 1 Stage 1
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFTransform Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
a) Algebraic Derivation
b) Practical Programming Considerations
c) Alternative Forms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 104
sites.google.com/site/ncpdhbkhn 105
Alternative Form (1)
sites.google.com/site/ncpdhbkhn 106
Alternative Form (2)
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFTransform Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 107
sites.google.com/site/ncpdhbkhn 108
Decimation – in – Frequency
FFT Algorithms (1)
1
0
0 1 1[ ] [ ] , , ,...,
N
kn
N
n
X k x n W k N
1 1
2
2
0 0
2 0 1 1
2
( )
/[ ] [ ] [ ] , , ,...,
N N
k n kn
N N
n n
NX k x n W x n W k
1 1
2 2
2
2 2
0 0 2
/ /[ ]
N N
Nk k
kn
N N
n n
Nx n W x n W
1 1
2 2
2 2
0 0 2
/ /[ ]
N N
kn kn
N N
n n
Nx n W x n W
1
2
2
0
0 1 1
2 2/
[ ] , , ,...,
N
kn
N
n
N Nx n x n W k
1
2
2
0
2 1 0 1 1
2 2/
[ ] [ ] , , ,...,
N
n kn
N N
n
N NX k x n x n W W k
sites.google.com/site/ncpdhbkhn 109
Decimation – in – Frequency
FFT Algorithms (2)
1
2
2
0
1
2
2
0
0 1 1
2 2
2 1 0 1 1
2 2
/
/
[ ] [ ] , , ,...,
[ ] [ ] , , ,...,
N
kn
N
n
N
n kn
N N
n
N NX k x n x n W k
N NX k x n x n W W k
2 0 1 2 1
2 0 1 2 1
[ ] [ ] [ / ], , ,..., /
[ ] [ ] [ / ] , , ,..., /nN
a n x n x n N n N
b n x n x n N W n N
1
2
2
0
1
2
2
0
0 1 1
2
0 1 1
2
/
/
[ ] [ ] , , ,...,
[ ] [ ] , , ,...,
N
kn
N
n
N
kn
N
n
NA k a n W k
NB k b n W k
2 0 1 1
2
2 1 0 1 1
2
[ ] [ ], , ,...,
[ ] [ ], , ,...,
NX k A k k
NX k B k k
sites.google.com/site/ncpdhbkhn 110
Decimation – in – Frequency
FFT Algorithms (3)
8DFT 0 1 2 3 4 5 6 7 0 7[ ] { [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]},X k x x x x x x x x k
Ex.
8
4
4
[ ] [ ] [ ]
[ ] ( [ ] [ ]) n
a n x n x n
b n x n x n W
0 0 0 1
1 2 1 3
2 4 2 5
3 6 3 7
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
A X B X
A X B X
A X B X
A X B X
2
8
2
8
2
2
2
2
[ ] [ ] [ ]
[ ] ( [ ] [ ])
[ ] [ ] [ ]
[ ] ( [ ] [ ])
n
n
c n a n a n
d n a n a n W
e n b n b n
f n b n b n W
sites.google.com/site/ncpdhbkhn 111
Decimation – in – Frequency
FFT Algorithms (4)
8DFT 0 1 2 3 4 5 6 7 0 7[ ] { [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]},X k x x x x x x x x k
Ex.
1
2
2
0
1
2
2
0
0 1 1
2
0 1 1
2
2 0 1 1
2
2 1 0 1 1
2
/
/
[ ] [ ] , , ,...,
[ ] [ ] , , ,...,
[ ] [ ], , ,...,
[ ] [ ], , ,...,
N
kn
N
n
N
kn
N
n
NA k a n W k
NB k b n W k
NX k A k k
NX k B k k
0 0 1 0 0
1 0 1 2 4
0 0 1 1 2
1 0 1 3 6
0 0 1 0 1
1 0 1 2 5
0 0 1 1 3
1 0 1 3 7
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]
C c c A X
C c c A X
D d d A X
D d d A X
E e e B X
E e e B X
F f f B X
F f f B X
1 1
1 1
[ ] [ ] [ ]
[ ] ( [ ] [ ])
m m m
r
m m m N
X p X p X q
X q X p X q W
1[ ]mX p
1[ ]mX q
[ ]mX p
[ ]mX q
r
NW
1
sites.google.com/site/ncpdhbkhn 112
Decimation – in – Frequency
FFT Algorithms (5)
8DFT 0 1 2 3 4 5 6 7 0 7[ ] { [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]},X k x x x x x x x x k
Ex.
0[ ]x 0[ ]X
1[ ]x 4[ ]X
2[ ]x 2[ ]X
3[ ]x 6[ ]X
4[ ]x 1[ ]X
5[ ]x 5[ ]X
6[ ]x 3[ ]X
7[ ]x 7[ ]X
0
8W
2
8W
2
8W
0
8W
1
8W
0
8W
3
8W
2
8W
1
1
1
1
1
1
1
1
0
8W
0
8W
0
8W
0
8W
1
1
1
1
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
sites.google.com/site/ncpdhbkhn 113
sites.google.com/site/ncpdhbkhn 114
Generalizations and Additional
FFT Algorithms (1)
2 1 2 1 1 2 2
1 1 2 1 1 2 2
0 1 1 0 1 1
0 1 1 0 1 1
, , ,..., , , ,...,
, , ,..., , , ,...,
n N n n n N n N
k k N k n N n N
2 1 2 1 1 2 1 2 1 2 2 2 1 1 2 1( )( )nk N n n k N k Nn k N n k N n k n k
1 2
2 1
1, ,N NNN N N N NW W W W W
1
0
0 1 1[ ] [ ] , , ,...,
N
kn
N
n
X k x n W k N
2 1
2 1 2 1 1 2
2 1
1 1
1 1 2 2 1 2
0 0
( )( )[ ] [ ]
N N
N n n k N k
N
n n
X k N k x N n n W
2 1
1 1 1 2 2 2
1 2
2 1
1 1
2 1 2
0 0
[ ]
N N
k n k n k n
N N N
n n
x N n n W W W
sites.google.com/site/ncpdhbkhn 115
Generalizations and Additional
FFT Algorithms (2)
2 1
1 1 1 2 2 2
1 2
2 1
1 1
1 1 2 2 1 2
0 0
[ ] [ ]
N N
k n k n k n
N N N
n n
X k N k x N n n W W W
2 1 2 1 2
[ ] [ ]nx n x N n n
1 1
2 2 1
1
1
1 1
0
[ ] [ ]
N
k n
n n N
n
X k x n W
2
1 2 2 2
2 2
2
1
1 1 2 1
0
[ ] [ ]
N
k n k n
N n N
n
X k N k W X k W
1 2
1 22 1
[ ] [ ]k nk N nx n W X k
2
2 2
1 2
2
1
1 1 2 2
0
[ ] [ ]
N
k n
k N
n
X k N k x n W
Generalizations and Additional
FFT Algorithms (3)
1. Form the N2 decimated sequences
compute the N1 – point DFT of each sequences.
2. Multiply each N1 – point DFT by the twiddle
factor:
3. Compute the N2 – point DFTs of the N1
sequences determined from step 2.
sites.google.com/site/ncpdhbkhn 116
2 1 2 1 2
[ ] [ ],nx n x N n n
1 2
1 22 1
[ ] [ ].k nk N nx n W X k
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
a) Goertzel’s Algorithm
b) Chirp Transform Algorithm
c) Sliding DFT
sites.google.com/site/ncpdhbkhn 117
sites.google.com/site/ncpdhbkhn 118
Goertzel’s Algorithm (1)
1
0
0 1 1[ ] [ ] , , ,...,
N
kn
N
n
X k x n W k N
1kNNW
1 1
0 0
( )[ ] [ ] [ ]
N N
kN kn k N n
N N N
n n
X k W x n W x n W
3
4
4
0
4 ( )[ ] [ ] k n
n
N X k x n W
2 3 4
4 4 4 43 2 1 0[ ] [ ] [ ] [ ]
k k k kx W x W x W x W
4 4 4 43 2 1 0[ ] [ ] [ ] [ ]k k k kW x W x W x W x
sites.google.com/site/ncpdhbkhn 119
Goertzel’s Algorithm (2)
4 4 4 43 2 1 0[ ] [ ] [ ] [ ] [ ]k k k kX k W x W x W x W x
4
4 4
4 4 4
1 0 0 0 1
1 1 0 2 2 1
3 3 2 4 4 3 3
[ ] , [ ] [ ] [ ],
[ ] [ ] [ ], [ ] [ ] [ ]
[ ] [ ] [ ], [ ] [ ] [ ] [ ]
k
k k k
k k
k k k k
k k k
k k k k k
y y x W y
y x W y y x W y
y x W y y x W y W y
1 0[ ] [ ] [ ],
[ ] [ ]
k
k N k
k
y n W y n x n n N
X k y N
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
a) Goertzel’s Algorithm
b) Chirp Transform Algorithm
c) Sliding DFT
sites.google.com/site/ncpdhbkhn 120
sites.google.com/site/ncpdhbkhn 121
Chirp Transform Algorithm
1
0
0 1 1[ ] [ ] , , ,...,
N
kn
N
n
X k x n W k N
2 2 21
2
[ ( ) ]kn k n k n
2 2 21
2 2 2
0
( )
[ ] [ ]
k n k nN
N N N
n
X k x n W W W
2 2 21
2 2 2
0
( )
[ ]
k n k nN
N N N
n
x n W W W
2 2 22 2 2 0 1/ / /[ ] * ,n n nN N Nx n W W W n N
2 2/ ( / )[ ] n j n N nNh n W e
2 2/[ ] *
[ ]
[ ]
[ ]
n
N
x n W
h nX k
h n
The Discrete Fourier Transform
1. Computational Fourier Analysis
2. The Discrete Fourier Transform
3. Sampling the Discrete – Time Fourier Transform
4. Properties of the Discrete Fourier Transform
5. Linear Convolution Using the DFT
6. Fourier Analysis of Signals Using the DFT
7. Direct Computation of the DFT
8. The FFT Idea Using a Matrix Approach
9. Decimation – in – Time FFT Algorithms
10. Decimation – in – Frequency FFT Algorithms
11. Generalizations and Additional FFT Algorithms
12. Computation of DFT for Special Applications
a) Goertzel’s Algorithm
b) Chirp Transform Algorithm
c) Sliding DFT
sites.google.com/site/ncpdhbkhn 122
sites.google.com/site/ncpdhbkhn 123
Sliding DFT
1 0 1
1
0 otherwise
[ ],
[ ] ,
,n
x n N m m N
x m n N
1 1
0 0
1 1 0 1[ ] [ ] [ ] , ,
N N
mk mk
n n N N
m m
X k x m W x n N m W n N k N
1
1
1
0
1 0 1
0 1
{ [ ] [ ] [ ]} , ,
[ ] [ ] ,
k
n N
N
mk
N N
m
X k x n x n N W n N k N
X k x n W k N
0 1N n N 1n
n
1n N n
1[ ]nx m
[ ]nx m1[ ]Nx m
Các file đính kèm theo tài liệu này:
- discrete_fourier_transform_2015mk_7549.pdf