Signal processing - Fourier representation of signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier
Transform
a) Relationship to the z – Transform and Periodicity
b) Symmetry Properties
c) Operational Properties
d) Correlation of Signals
e) Signals with Poles on the Unit Circle
77 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 771 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Signal processing - Fourier representation of signals, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
SIGNAL PROCESSING
Fourier Representation of Signals
Contents
I. Introduction
II. Discrete – Time Signals and Systems
III. The z – Transform
IV.Fourier Representation of Signals
V. Transform Analysis of LTI Systems
VI. Sampling of Continuous – Time Signals
VII.The Discrete Fourier Transform
VIII.Structures for Discrete – Time Systems
IX. Design of FIR Filters
X. Design of IIR Filters
XI. Random Signal Processing
sites.google.com/site/ncpdhbkhn 2
sites.google.com/site/ncpdhbkhn 3
Fourier Representation of Signals
⋮
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
a) Continuous – Time Sinusoids
b) Discrete – Time Sinusoids
c) Frequency Variables and Units
2. Fourier Representation of Continuous – Time
Signals
3. Fourier Representation of Discrete – Time
Signals
4. Summary of Fourier Series and Fourier
Transforms
5. Properties of the Discrete – Time Fourier
Transform
sites.google.com/site/ncpdhbkhn 4
Continuous – Time Sinusoids (1)
• A: the amplitude
• θ: phase (radians, rad)
• F0: frequency (Hertz, Hz)
• Ω0: angular frequency (rad/s)
• T0: period (s)
sites.google.com/site/ncpdhbkhn 5
02( ) cos( ),x t A F t tpi θ= + − ∞ < < ∞
0 t
( )x t
A
cosA θ
0T
0 02 FpiΩ =
0
0 0
1 2T
F
pi
= =
Ω
cos sinje jϕ ϕ ϕ± = ±
0 0
02 2
cos( ) ( )
j t j tj jAA F t e e e eθ θpi θ Ω − Ω−+ = +
sites.google.com/site/ncpdhbkhn 6
Continuous – Time Sinusoids (2)
0 t1T
1 12( ) cosx t F tpi=
t0 2T
2 22( ) cosx t F tpi=
sites.google.com/site/ncpdhbkhn 7
Continuous – Time Sinusoids (3)
0 02
1( )
j t j F t
s t e e piΩ= =
0 02 2 2
2( )
j t j F t
s t e e piΩ= =
⋮
0 02( )
jk t j kF t
ks t e e
piΩ
= =
The fundamental/first harmonic
The second harmonic
The kth harmonic
0 0 0 0 0 0
0 0
0
0
t T t T jk t jm t
k mt t
T k m
s t s t dt e e dt
k m
+ + Ω − Ω =
= =
≠
∫ ∫
*
,
( ) ( )
,
sites.google.com/site/ncpdhbkhn 8
Continuous – Time Sinusoids (4)
0 t
0 t
1 0 0 1 0 2 02 2 3 2 5( ) cos( ) cos( ) cos( )x t A F t A F t A F tpi pi pi= + +
2 0 0 1 0 2 02 2 2 83 2 7 14( ) cos( ) cos( . ) cos( . )x t B F t B F t B F tpi pi pi= + +
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
a) Continuous – Time Sinusoids
b) Discrete – Time Sinusoids
c) Frequency Variables and Units
2. Fourier Representation of Continuous – Time
Signals
3. Fourier Representation of Discrete – Time
Signals
4. Summary of Fourier Series and Fourier
Transforms
5. Properties of the Discrete – Time Fourier
Transform
sites.google.com/site/ncpdhbkhn 9
sites.google.com/site/ncpdhbkhn 10
Discrete – Time Sinusoids (1)
0 nT
0 nT
0 nT
0 nT
Discrete – Time Sinusoids (5)
• The sequence x[n] = Acos(2πf0 + θ) is periodic in ω0 with
fundamental period 2π and periodic in f0 with fundamental
period one. (periodic in frequency), therefore:
1. Sinusoidal sequences with ω0 separated by k2π are identical
2. Frequencies are always within an interval of 2π radians:
–π < ω ≤ π or 0 ≤ ω < 2π (the fundamental frequency range)
3. Acos[ω0(n + n0) + θ] = Acos[ω0n + (ω0n0 + θ)]: a time shift is
equivalent to a phase change
4. The rate of oscillation of a discrete – time sine increases if ω0
increases from 0 to π, but becomes slower if ω0 increases from π to
2π.
sites.google.com/site/ncpdhbkhn 14
sites.google.com/site/ncpdhbkhn 15
Discrete – Time Sinusoids (6)
2
[ ] , ,k
j knj n N
k k ks n A e A e k n
pi
ω
= = −∞ < < ∞
periodic in time[ ] [ ], ( )k ks n N s n+ =
periodic in frequency[ ] [ ], ( )k N ks n s n+ =
0 0
0 0
2 21 1
0
n n N n n N j kn j mn
N N
k m
n n n n
N k m
s n s n e e
k m
pi pi= + − = + −
−
= =
=
= =
≠
∑ ∑*
,
[ ] [ ]
,
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
a) Continuous – Time Sinusoids
b) Discrete – Time Sinusoids
c) Frequency Variables and Units
2. Fourier Representation of Continuous – Time
Signals
3. Fourier Representation of Discrete – Time
Signals
4. Summary of Fourier Series and Fourier
Transforms
5. Properties of the Discrete – Time Fourier
Transform
sites.google.com/site/ncpdhbkhn 16
sites.google.com/site/ncpdhbkhn 17
Frequency Variables and Units
,HzF
s
F−
2
s
F
−
0
0
0
0
2
s
F 1
s
F
T
=
rad
,
sec
Ω
cycles
,
samples
f
radians
samples
,ω
2
s
Fpi−
s
Fpi−
s
Fpi 2
s
Fpi
1− 0 5.− 0 5. 1
2pipipi−2pi−
2( ) cos( )x t A Ftpi θ= +
( ) cos( )x t A t θ= Ω +
[ ] cos( )x n A nω θ= +
2[ ] cos( )x n A fnpi θ= +
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time
Signals
a) Fourier Series for Continuous – Time Periodic
Signals
b) Fourier Transform for Continuous – Time
Aperiodic Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier Transform
sites.google.com/site/ncpdhbkhn 18
sites.google.com/site/ncpdhbkhn 19
Fourier Series for Continuous –
Time Periodic Signals (1)
⋮
0
1
j t
c e
Ω
02
2
j t
c e
Ω
03
3
j t
c e
Ω
04
4
j t
c e
Ω
05
5
j t
c e
Ω
0( )
jk t
k
k
x t c e
∞
Ω
=−∞
= ∑
Fourier Series for Continuous –
Time Periodic Signals (2)
• Plot of |ck|: the magnitude spectrum of x(t)
• Plot of θk: the phase spectrum of x(t)
sites.google.com/site/ncpdhbkhn 20
0( )
jk t
k
k
x t c e
∞
Ω
=−∞
= ∑
0 0
0
00
1
( )
t T jk t
k t
c x t e dt
T
+
− Ω
= ∫Continuous – Time
Fourier Series
(CTFS)
Fourier Synthesis Fourier Analysis
The Fourier series representation of a continuous – time periodic signal
k k kc c θ= ∠
sites.google.com/site/ncpdhbkhn 21
Fourier Series for Continuous –
Time Periodic Signals (3)Ex. 1
Find the Fourier series?
( )x t
A
0 ττ− 0T0T−
t
0 0 0
00
1
( )
t T jk t
k t
c x t e dt
T
+
− Ω
= ∫
0 0( ) ,x t A kT t kTτ τ= − + ≤ ≤ +
0
0
1 jk t
kc Ae dtT
τ
τ
− Ω
−
→ = ∫
0
0 0
jk tA e
T jk
τ
τ
− Ω
−
=
− Ω
0 0
0 0
jk jkA e e
k T j
τ τΩ − Ω
−
=
Ω
0
0 0cos( ) sin( )
jk
e k j kτ τ τΩ = Ω + Ω
0
0 0cos( ) sin( )
jk
e k j kτ τ τ− Ω = − Ω + − Ω
0 0
0 0 0 0
2 2sin( ) sin( )
k
A k kA
c
k T T k
τ ττ
τ
Ω Ω
→ = =
Ω Ω
sites.google.com/site/ncpdhbkhn 22
Fourier Series for Continuous –
Time Periodic Signals (4)Ex. 1
Find the Fourier series?
( )x t
A
0 ττ− 0T0T−
t
0
0 0
0
0 0 0
2
22 2
2
sin( )
sin( ) sin
k
kA
c
T k
k FA A
T k F T
ττ
τ
pi ττ τ φ
pi τ φ
Ω
=
Ω
= =
0
0 0
2 0 2
0
sinA A
c
T T
τ τ
= =
0( )
jk t
k
k
x t c e
∞
Ω
=−∞
= ∑
0
1
0 0
22
2
sin( )FA
c
T F
pi ττ
pi τ−
−
=
−
0
1
0 0
22
2
sin( )FA
c
T F
pi ττ
pi τ
=
0 00 0
0 0 0 0 0
2 22 2 2
2 2
sin( ) sin( )
( ) ... ...
j t j tF FA A A
x t e e
T F T T F
pi τ pi ττ τ τ
pi τ pi τ
− Ω Ω−
= + + + +
−
sites.google.com/site/ncpdhbkhn 23
Fourier Series for Continuous –
Time Periodic Signals (5)Ex. 1
Find the Fourier series?
( )x t
A
0 ττ− 0T0T−
t
3
3 3
sin( / )
/
k
A k
c
k
pi
pi
→ =
2 0 33 0 33 0
6
o. .
A A Aτ
τ
= = = ∠0
0
2A
c
T
τ
=
0
1
0 0
22
2
sin( )FA
c
T F
pi ττ
pi τ−
−
=
−
0
1
0 0
22
2
sin( )FA
c
T F
pi ττ
pi τ
=
3 0 28 0 28 0
3 3
osin( / )
. .
/
A A Api
pi
= = = ∠
0 6T τ=
3 0 28 0 28 0
3 3
osin( / )
. .
/
A A Api
pi
−
= = = ∠
−
2 2 3 3
4 4 5 5
6 6
0 14 0 14 0 0
0 069 0 069 0 055 0 055
0 0
. ; . ; ;
. ; . ; . ; .
;
c A c A c c
c A c A c A c A
c c
− −
− −
−
= = = =
= − = − = − = −
= =
sites.google.com/site/ncpdhbkhn 24
Fourier Series for Continuous –
Time Periodic Signals (6)Ex. 1
( )x t
A
0 ττ− 0T0T−
t
Find the Fourier series?
0
1 1
2 2
3 3
4 4
5 5
6 6
0 33
0 28 0 28
0 14 0 14
0 0
0 069 0 069
0 055 0 055
0 0
.
. ; . ;
. ; . ;
;
. ; . ;
. ; . ;
;
c A
c A c A
c A c A
c c
c A c A
c A c A
c c
−
−
−
−
−
−
=
= =
= =
= =
= − = −
= − = −
= =
k
0 1 2 3 4 5 61−2−3−4−5−6−
kc
sites.google.com/site/ncpdhbkhn 25
Fourier Series for Continuous –
Time Periodic Signals (7)Ex. 2
Find the Fourier series?
( )x t
A
0 ττ− 0T0T−
t
A−
sites.google.com/site/ncpdhbkhn 26
Fourier Series for Continuous –
Time Periodic Signals (8)Ex. 3
Find the Fourier series? ( )x t
0 0T
t
A
0 0 0
00
1
( )
t T jk t
k t
c x t e dt
T
+
− Ω
= ∫
0 0 0
0
0 0 0 0
0
4 2
4 3 2
, /
( )
, /
A
t A kT t T kT
T
x t
A
t A T kT t T kT
T
− + < ≤ +
=
− + < ≤ +
0
0
0
0
0
2
0
0 0
2
0 0
1 4
1 4 3
/
/
T jk t
T jk t
T
A
t A e dt
T T
A
t A e dt
T T
− Ω
− Ω
−
= + +
+ −
∫
∫
0 00 0
0 0
0 0
0 0
2 2
2 0 0
0 0
2 2 2
0 0
4
4 3
/ /
/ /
T Tjk t jk t
T Tjk t jk t
T T
A A
te dt e dt
T T
A A
te dt e dt
T T
− Ω − Ω
− Ω − Ω
= − + +
+ −
∫ ∫
∫ ∫
sites.google.com/site/ncpdhbkhn 27
Fourier Series for Continuous –
Time Periodic Signals (9)Ex. 3
( )x t
0 0T
t
A
Find the Fourier series?
0 0
0 0
0 0
0 0
0 0
2 2
2 0 0
0 0
2 2 2
0 0
4
4 3
/ /
/ /
T Tjk t jk t
k
T Tjk t jk t
T T
A A
c te dt e dt
T T
A A
te dt e dt
T T
− Ω − Ω
− Ω − Ω
= − + +
+ −
∫ ∫
∫ ∫
0
0 0 0
0
0 0 0
0
2
2 2
0 0 0 0 0 0
2 2
0 0 0 0 0 2
4
4 3
/
/
( )
( )
Tjk t jk t jk t
Tjk t jk t jk t
T
A te e A e
T jk jk T jk
A te e A e
T jk jk T jk
− Ω − Ω − Ω
− Ω − Ω − Ω
= − − + +
− Ω − Ω − Ω
+ − −
− Ω − Ω − Ω
...=
sites.google.com/site/ncpdhbkhn 28
Fourier Series for Continuous –
Time Periodic Signals (10)
Convergence conditions (Dirichlet conditions):
0 0
0
( )
t T
t
x t dt
+
< ∞∫
0 0
0
0
2 0( ) , lim ( ) ( )
m t Tjk t
m k mtmk m
x t c e x t x t dt
+Ω
→∞
=−
= − =∑ ∫
1. The periodic signal x(t) is absolutely integrable over any period, that is,
x(t) has a finite area per period:
2. The periodic signal x(t) has a finite number of maxima, minima, and finite
discontinuities per period.
sites.google.com/site/ncpdhbkhn 29
Fourier Series for Continuous –
Time Periodic Signals (11)
( )x t
A
0 ττ− 0T0T−
t
( )x t
0 0T
t
A
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time
Signals
a) Fourier Series for Continuous – Time Periodic
Signals
b) Fourier Transform for Continuous – Time
Aperiodic Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier Transform
sites.google.com/site/ncpdhbkhn 30
sites.google.com/site/ncpdhbkhn 31
Fourier Transforms for Continuous –
Time Aperiodic Signals (1)
( )x t
A
0 ττ− 0T0T−
t
k
kc
0
1F
T
∆ =
0T →∞
Ex. 1
sites.google.com/site/ncpdhbkhn 32
Fourier Transforms for Continuous –
Time Aperiodic Signals (2)
0( )
jk t
k
k
x t c e
∞
Ω
=−∞
= ∑
0 0
0
00
1
( )
t T jk t
k t
c x t e dt
T
+
− Ω
= ∫Continuous – Time
Fourier Series
(CTFS)
Fourier Synthesis Fourier Analysis
The Fourier series representation of a continuous – time periodic signal
22( ) ( ) j Ftx t X j F e dFpipi∞
−∞
= ∫
22( ) ( ) j FtX j F x t e dtpipi ∞ −
−∞
= ∫
Continuous – Time Fourier Transform
(CTFT)
Fourier Synthesis Fourier Analysis
The Fourier transform representation of a continuous – time aperiodic signal
sites.google.com/site/ncpdhbkhn 33
Fourier Transforms for Continuous –
Time Aperiodic Signals (3)
200 300 400 500 600 700 800
0
0.2
0.4
0.6
0.8
1
200 300 400 500 600 700 800
0
0.5
1
200 300 400 500 600 700 800
0
0.5
1
200 300 400 500 600 700 800
0
0.2
0.4
0.6
0.8
1
sites.google.com/site/ncpdhbkhn 34
Fourier Transforms for Continuous –
Time Aperiodic Signals (4)
Convergence conditions
( )x t dt
∞
−∞
< ∞∫
1. The aperiodic signal x(t) is absolutely integrable, that is, x(t) has a finite area.
2. The aperiodic signal x(t) has a finite number of maxima, minima, and finite
discontinuities in any finite interval.
sites.google.com/site/ncpdhbkhn 35
Fourier Transforms for Continuous –
Time Aperiodic Signals (5)Ex. 2
ate−
t
0
0
0 0
,
( )
,
at
e t
x t
t
− >
=
<
Find the Fourier transform of
22( ) ( ) j FtX j F x t e dtpipi ∞ −
−∞
= ∫
2
0
at j Ft
e e dtpi
∞
− −
= ∫
2
0
( )a j F t
e dtpi
∞
− +
= ∫
2
02
( )a j F te
a j F
pi
pi
∞
− +
=
− −
1 10
2 2a j F a j Fpi pi= − =− − + 2 2
1 2
2
atan
( )
F
aa F
pi
pi
= ∠ −
+
-10 -8 -6 -4 -2 0 2 4 6 8 10
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5
-1
-0.5
0
0.5
1
1.5
sites.google.com/site/ncpdhbkhn 36
Fourier Transforms for Continuous –
Time Aperiodic Signals (6)Ex. 3
0
,
( )
,
A t
x t
t
τ
τ
<
=
>
Find the Fourier transform of
22( ) ( ) j FtX j F x t e dtpipi ∞ −
−∞
= ∫
2j FtAe dt
τ pi
τ
−
−
= ∫
2
2
j FtAe
j F
τpi
τ
pi
−
−
=
−
( )x t
A
0 ττ−
t
22
2
sin( )FA
F
pi τ
τ
pi τ
=
-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
-5 -4 -3 -2 -1 0 1 2 3 4 5
-3
-2
-1
0
1
2
3
sites.google.com/site/ncpdhbkhn 37
Fourier Transforms for Continuous –
Time Aperiodic Signals (7)
aperiodic( ) :x t
periodic( ) :s t
( ) ( ) ( )
s
x t x t s t=
02 22( ) ( ) j F kt j Ft
s k
k
X j F x t c e e dtpi pipi
∞
∞
−
−∞
=−∞
→ =
∑∫
02 ( )( )
j F kF t
k
k
c x t e dtpi
∞
∞
− −
−∞
=−∞
=
∑ ∫
02
02
( )
( ) [ ( )]
j F kF t
x t e dt X j F kFpi pi∞ − −
−∞
= −∫
02 2( ) [ ( )]s k
k
X j F c X j F kFpi pi
∞
=−∞
→ = −∑
sites.google.com/site/ncpdhbkhn 38
Fourier Transforms for Continuous –
Time Aperiodic Signals (8)
02 2( ) [ ( )]s k
k
X j F c X j F kFpi pi
∞
=−∞
= −∑
( )s t
1
0 ττ− 0T0T−
t
t
( )x t
F
2( )X j Fpi
F
0
0
0
sin( )
( )k
kF
c F
kF
τ
τ
τ
=
0 0F
02F
03F
04F
05F0F−
02F−
03F−
04F−
05F−
F
2( )
s
X j Fpi
0 0F
02F
03F
04F
05F
0F−
02F−
03F−
04F−
05F−0
2 2( ) [ ( )]
s k
k
X j F c X j F kFpi pi
∞
=−∞
= −∑
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time
Signals
3. Fourier Representation of Discrete – Time
Signals
a) Fourier Series for Discrete – Time Periodic Signals
b) Fourier Transform for Discrete – Time Aperiodic
Signals
4. Summary of Fourier Series and Fourier
Transforms
5. Properties of the Discrete – Time Fourier
Transform
sites.google.com/site/ncpdhbkhn 39
sites.google.com/site/ncpdhbkhn 40
Fourier Series for Discrete –
Time Periodic Signals (1)
0( )
jk t
k
k
x t c e
∞
Ω
=−∞
= ∑
0 0
0
00
1
( )
t T jk t
k t
c x t e dt
T
+
− Ω
= ∫Continuous – Time
Fourier Series
(CTFS)
Fourier Synthesis Fourier Analysis
21
0
[ ]
N j kn
N
k
k
x n c e
pi
−
=
=∑
21
0
1
[ ]
N j kn
N
k
n
c x n e
N
pi
−
−
=
= ∑Discrete – Time
Fourier Series
(DTFS)
Fourier Synthesis Fourier Analysis
sites.google.com/site/ncpdhbkhn 41
Fourier Series for Discrete –
Time Periodic Signals (2)Ex. 1
Find the Fourier coefficients of x[n] = sinω0n = sin2πf0n.
0 02 2
0
1 12
2 2
j
j f n j f n
j
e j
x n f n e ej je j
θ
pi pi
θ
θ θ
pi
θ θ
−
−
= +
→ = = −
= −
cos sin
[ ] sin
cos sin
0 0 0 02 2 2 22 21 1 1 11 1
2 2 2 2
k k k kj n j n j n j nj n j nN N N Ne x n e e e e ej j j j
pi pi pi pipi pi− −
= → = − × = −[ ]
0 02 21 1
2 2
k kj n j n
N Ne ej j
pi pi−
= −
0 0
2 21 1
2 2
( )j k n j N k n
N Ne ej j
pi pi
−
= −
sites.google.com/site/ncpdhbkhn 42
Fourier Series for Discrete –
Time Periodic Signals (3)Ex. 1
Find the Fourier coefficients of x[n] = sinω0n = sin2πf0n.
0 0
2 21 1
2 2
j k n j N k n
N Nx n e ej j
pi pi
−
= −
( )
[ ]
0 0
0 0
21
0
2 2 2 2 20 1 1
0 1 1
N j kn
N
k
k
j n j n j k n j N k n j N n
N N N N N
k N k N
x n c e
c e c e c e c e c e
pi
pi pi pi pi pi
−
=
× − −
− −
=
= + + + + + +
∑
( ) ( )
[ ]
... ... ...
0 00 1 2 1
1 10 0 0 0 0
2 2k m N k N N
c c c c c c cj j− − −→ = = = = = − = =; ; ... ; ; ...; ; ... ; ; ...; ;
0 0 1 2 3 4
1 12 5 0 0 0
2 2
k N c c c c cj j= = → = = = = − =, ; ; ; ;
0 1 2 3 4 5 6 7 88− 7− 6− 5− 4− 3− 2− 1−
0 5. kc
k
9 109−10−
sites.google.com/site/ncpdhbkhn 43
Fourier Series for Discrete –
Time Periodic Signals (4)Ex. 2
Find the Fourier series of the periodic sequence
1 any interger
0
, ,
[ ] [ ]
, otherwise
N
l
n mN m
n n lNδ δ
∞
=−∞
=
= − =
∑
21
0
1
[ ]
N j kn
N
k
n
c x n e
N
pi
−
−
=
= ∑
0 1 2 3 4 5 6 7 88− 7− 6− 5− 4− 3− 2− 1−
1
[ ]N nδ
n
⋯⋯21
0
1
[ ]
N j kn
N
n
n e
N
pi
δ
−
−
=
= ∑
1
, all k
N
=
21
0
1
[ ] , all
N j kn
N
N
n
n e n
N
pi
δ
−
−
=
→ = ∑
0 1 2 3 4 5 6 7 88− 7− 6− 5− 4− 3− 2− 1−
1 / N
kc
k
⋯⋯
sites.google.com/site/ncpdhbkhn 44
Fourier Series for Discrete –
Time Periodic Signals (5)Ex. 3
Find the Fourier series of the rectangular pulse sequence.
21
0
1
[ ]
N j kn
N
k
n
c x n e
N
pi
−
−
=
= ∑
21 L j knN
n L
e
N
pi
−
=−
= ∑
1
0
1
1
NN
n
n
a
a
a
−
=
−
=
−
∑
m n L= +
22
0
1 ( )L j k m LN
k
m
c e
N
pi
− −
=
= ∑
2 22
0
1
m
Lj kL j k
N N
m
e e
N
pi pi
−
=
=
∑
2 2 2 1
2
1
1
( )j kL j k L
N N
j k
N
e e
N
e
pi pi
pi
− +
−
−
=
−
2 2 2 21 2 2/ / / /( ) [ sin( / )]j j j j je e e e e jθ θ θ θ θ θ− − − −− = − =
2 1
21
2 1
2
sin
sin
k
k L
N
c
N k
N
pi
pi
+
→ =
0 1 2 3 4 5 6 7 88− 7− 6− 5− 4− 3− 2− 1−
1
[ ]x n
n
⋯⋯ L N
sites.google.com/site/ncpdhbkhn 45
Fourier Series for Discrete –
Time Periodic Signals (6)Ex. 3
Find the Fourier series of the rectangular pulse sequence.
2 1
21
2 1
2
sin
sin
k L
N
N k
N
pi
pi
+
=
21 L j knN
k
n L
c e
N
pi
−
=−
= ∑
2 1 0 2
2 1
21
2 1
2
, , , , ...
sin
, otherwise
sin
k
L k N N
N
c k L
N
N k
N
pi
pi
+
= ± ±
= +
0 1 2 3 4 5 6 7 88− 7− 6− 5− 4− 3− 2− 1−
1
[ ]x n
n
⋯⋯ L N
2
0
0 0 0
2 1
1
1 1 1 1
2 1
terms
...
L j kn
N
n L
L
c e
N
e e e
N
L
N
pi
−
=−
+
=
= + + +
+
=
∑
0 5.
kc
k
⋯⋯ 0 33.0 33.
0 17.−0 17.− 0
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time
Signals
3. Fourier Representation of Discrete – Time
Signals
a) Fourier Series for Discrete – Time Periodic Signals
b) Fourier Transform for Discrete – Time Aperiodic
Signals
4. Summary of Fourier Series and Fourier
Transforms
5. Properties of the Discrete – Time Fourier
Transform
sites.google.com/site/ncpdhbkhn 46
sites.google.com/site/ncpdhbkhn 47
Fourier Transform for Discrete –
Time Aperiodic Signals (1)
0 1 2 3 4 5 6 7 88− 7− 6− 5− 4− 3− 2− 1−
1
[ ]x n
n
⋯⋯ L N
0 5.
kc
k
⋯⋯ 0 33.0 33.
0 17.−0 17.−
0
sites.google.com/site/ncpdhbkhn 48
Fourier Transform for Discrete –
Time Aperiodic Signals (2)
21
0
[ ]
N j kn
N
k
k
x n c e
pi
−
=
=∑
21
0
1
[ ]
N j kn
N
k
n
c x n e
N
pi
−
−
=
= ∑
Discrete – Time
Fourier Series
(DTFS)
Fourier Synthesis Fourier Analysis
0
0
21
2
[ ] ( )
t j j n
t
x n X e e d
pi
ω ω ω
pi
+
= ∫ ( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
= ∑
Discrete – Time
Fourier Transform
(DTFT)
Fourier Synthesis Fourier Analysis
21
( )
j k
N
kc X eN
pi
=
sites.google.com/site/ncpdhbkhn 49
Fourier Transform for Discrete –
Time Aperiodic Signals (3)Ex.
Find the DTFT of the sequence x[n] = δ[n + 1] + δ[n] + δ[n – 1].
( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
= ∑
1
1
[ ]
j n
n
x n e ω−
=−
= ∑
1j je eω ω−= + +
1 2cosω= +
0 1 2 3 44− 3− 2− 1−
1
[ ]x n
n
-6 -4 -2 0 2 4 6
0
1
2
3
ω
M
a
g
n
i
t
u
d
e
s
p
e
c
t
r
u
m
-6 -4 -2 0 2 4 6
-2
0
2
ω
P
h
a
s
e
s
p
e
c
t
r
u
m
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time
Signals
3. Fourier Representation of Discrete – Time
Signals
4. Summary of Fourier Series and Fourier
Transforms
5. Properties of the Discrete – Time Fourier
Transform
sites.google.com/site/ncpdhbkhn 50
Continuous – time signals Discrete – time signals
Time – domain Frequency – domain Time – domain Frequency – domain
P
e
r
i
o
d
i
c
s
i
g
n
a
l
s
A
p
e
r
i
o
d
i
c
s
i
g
n
a
l
s
F
o
u
r
i
e
r
s
e
r
i
e
s
F
o
u
r
i
e
r
t
r
a
n
s
f
o
r
m
s
Continuous & periodic Discrete & aperiodic Discrete & periodic Discrete & periodic
Continuous & aperiodic Continuous & aperiodic Discrete & aperiodic Continuous & periodic
( )x t
A
0 ττ− 0T0T−
t k
0 1 2 3 4 5 61−2−3−4−5−6−
kc
0
0
2
T
piΩ =
0( )
jk t
k
k
x t c e
∞
Ω
=−∞
=∑
0 0
0
00
1
( )
t T jk t
k t
c x t e dt
T
+
− Ω
= ∫
ICTFS
CTFS
2
0
[ ]
N j kn
N
k
k
x n c e
pi
=
=∑
21
0
1
[ ]
N j kn
N
k
n
c x n e
N
pi
−
−
=
= ∑
IDTFS
DTFS
1
2
( ) ( ) j tx t X j e d
pi
∞ Ω
−∞
= Ω Ω∫
( ) ( ) jk tX j x t e dt∞ − Ω
−∞
Ω = ∫
ICTFT
CTFT
0 0
0
1
2
[ ] ( )
t T j j n
t
x n X e e dω ω ω
pi
+
= ∫
( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
=∑
IDTFT
DTFT
( )x t
A
0 ττ−
t
-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
( )X jΩ
0
[ ]x n
n
⋯⋯ N
kc
k
⋯⋯
0
0 1 2 3 44− 3− 2− 1−
[ ]x n
n
-6 -4 -2 0 2 4 60
0.5
1
1.5
2
2.5
3 ( )jX e ω
Ω
ω
sites.google.com/site/ncpdhbkhn 51
Summary of Fourier Series and
Fourier Transforms
Periodic ty w th “period” α in one domain implies discret zation
with “spacing” of 1/α in the other domain, and vice versa
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier
Transform
a) Relationship to the z – Transform and Periodicity
b) Symmetry Properties
c) Operational Properties
d) Correlation of Signals
e) Signals with Poles on the Unit Circle
sites.google.com/site/ncpdhbkhn 52
sites.google.com/site/ncpdhbkhn 53
Relationship to the z – Transform
and Periodicity (1)
( ) [ ] ( )j
j j n j
z e
n
z e X z x n e X eωω ω ω
∞
−
=
=−∞
= → = =∑
( ) [ ]
n
n
X z x n z
∞
−
=−∞
= ∑
( ) ( [ ] )
j j n j n
n
z re X re x n r eω ω ω
∞
− −
=−∞
= → = ∑
sites.google.com/site/ncpdhbkhn 54
Relationship to the z – Transform
and Periodicity (2)Ex.
Draw the magnitude spectrum of 0 1 2 2
01 2
( )
[ cos( ) ]
K
bH z
r z r zω − −
=
− +
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier
Transform
a) Relationship to the z – Transform and Periodicity
b) Symmetry Properties
c) Operational Properties
d) Correlation of Signals
e) Signals with Poles on the Unit Circle
sites.google.com/site/ncpdhbkhn 55
sites.google.com/site/ncpdhbkhn 56
Symmetry Properties (1)
( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
= ∑
[ ] [ ] [ ]
( ) ( ) ( )
cos( ) sin( )
R I
j j j
R I
j n
x n x n jx n
X e X e jX e
e n j n
ω ω ω
ω ω ω−
= +
= +
= −
( ) { [ ] [ ]}{cos( ) sin( )}
j
R I
n
X e x n jx n n j nω ω ω
∞
=−∞
→ = + −∑
{ [ ](cos ) [ ]cos( ) [ ]sin( ) [ ]sin( )}R I R I
n
x n n jx n n jx n n x n nω ω ω ω
∞
=−∞
= + − +∑
{ [ ]cos( ) [ ]sin( )} { [ ]cos( ) [ ]sin( )}R I I R
n n
x n n x n n j x n n x n nω ω ω ω
∞ ∞
=−∞ =−∞
= + + −∑ ∑
( ) { [ ]cos( ) [ ]sin( )
( ) { [ ]sin( ) [ ]cos( )
j
R R I
n
j
I R I
n
X e x n n x n n
X e x n n x n n
ω
ω
ω ω
ω ω
∞
=−∞
∞
=−∞
= +
→
= − −
∑
∑
sites.google.com/site/ncpdhbkhn 57
Symmetry Properties (2)
2
0
1
2
[ ] ( )
j j nx n X e e d
pi ω ω ω
pi
= ∫
[ ] [ ] [ ]
( ) ( ) ( )
cos( ) sin( )
R I
j j j
R I
j n
x n x n jx n
X e X e jX e
e n j n
ω ω ω
ω ω ω
= +
= +
= +
0
0
1
2
1
2
[ ] ( ) cos( ) ( )sin( )
[ ] ( )sin( ) ( )cos( )
j j
R R I
j j
I R I
x n X e n X e n d
x n X e n X e n d
pi
ω ω
pi
ω ω
ω ω ω
pi
ω ω ω
pi
2
2
= −
→
= +
∫
∫
sites.google.com/site/ncpdhbkhn 58
Symmetry Properties (3)
0
0
1
2
1
2
( ) { [ ]cos( ) [ ]sin( ) [ ] ( ) cos( ) ( )sin( )
[ ] ( )sin( ) ( ) cos( )( ) { [ ]sin( ) [ ]cos( )
j j j
R R I R R I
n
j jj
I R II R I
n
X e x n n x n n x n X e n X e n d
x n X e n X e n dX e x n n x n n
piω ω ω
pi ω ωω
ω ω ω ω ω
pi
ω ω ωω ω
pi
∞
2
=−∞
∞ 2
=−∞
= + = −
↔
= += − −
∑ ∫
∑ ∫
If x[n] is real 0[ ] [ ]; [ ]R Ix n x n x n= =
( ) [ ]cos( )
( ) [ ]sin( )
j
R
n
j
I
n
X e x n n
X e x n n
ω
ω
ω
ω
∞
=−∞
∞
=−∞
=
→
= −
∑
∑
cos( ) cos( ); sin( ) sin( )α α α α− = − = −
even symmetry( ) [ ]cos( ) [ ]cos( ) ( ) ( )
( ) [ ]sin( ) [ ]sin( ) ( ) (odd symmetry)
j j
R R
n n
j j
I I
n n
X e x n n x n n X e
X e x n n x n n X e
ω ω
ω ω
ω ω
ω ω
∞ ∞
−
=−∞ =−∞
∞ ∞
−
=−∞ =−∞
= − = =
→
= − − = = −
∑ ∑
∑ ∑
sites.google.com/site/ncpdhbkhn 59
Symmetry Properties (4)
If x[n] is real 0[ ] [ ]; [ ]R Ix n x n x n= =
2 2
atan
( ) ( ) ( )
( ) ( ) ( ) ( )
( )
( )
j j j
R I
j j j jR I j I
j
R
X e X e X e
X e X e jX e X eX e
X e
ω ω ω
ω ω ω
ω
ω
ω
= +
= + →
∠ =
( ) ( ); ( ) ( )
j j j j
R R I IX e X e X e X e
ω ω ω ω− −
= = −
2 2 even symmetry
atan
( ) ( ) ( ) ( ) ( )
( )
( ) ( ) (odd symmetry)
( )
j j j j
R I
j
j jI
j
R
X e X e X e X e
X eX e X e
X e
ω ω ω ω
ω
ω ω
ω
− − −
−
−
−
= + =
→
∠ = = −∠
0
0
1
2
1
2
( ) { [ ]cos( ) [ ]sin( ) [ ] ( ) cos( ) ( )sin( )
[ ] ( )sin( ) ( ) cos( )( ) { [ ]sin( ) [ ]cos( )
j j j
R R I R R I
n
j jj
I R II R I
n
X e x n n x n n x n X e n X e n d
x n X e n X e n dX e x n n x n n
piω ω ω
pi ω ωω
ω ω ω ω ω
pi
ω ω ωω ω
pi
∞
2
=−∞
∞ 2
=−∞
= + = −
↔
= += − −
∑ ∫
∑ ∫
sites.google.com/site/ncpdhbkhn 60
Symmetry Properties (5)
If x[n] is real 0[ ] [ ]; [ ]R Ix n x n x n= =
0
1
2
[ ] ( ) cos( ) ( )sin( )
j j
R Ix n X e n X e n d
pi ω ωω ω ω
pi
2
= − ∫
( ) ( )
( ) cos( ) ( )cos( )
cos( ) cos( )
( ) ( )
( )sin( ) ( )sin( )
sin( ) sin( )
j j
j jR R
R R
j j
j jI I
I I
X e X e
X e n X e n
n n
X e X e
X e n X e n
n n
ω ω
ω ω
ω ω
ω ω
ω ω
ω ω
ω ω
ω ω
−
−
−
−
=
→ =
− =
= −
→ =
− =
0
1
[ ] ( )cos( ) ( )sin( )j jR Ix n X e n X e n d
pi
ω ωω ω ω
pi
→ = − ∫
0
0
1
2
1
2
( ) { [ ]cos( ) [ ]sin( ) [ ] ( ) cos( ) ( )sin( )
[ ] ( )sin( ) ( ) cos( )( ) { [ ]sin( ) [ ]cos( )
j j j
R R I R R I
n
j jj
I R II R I
n
X e x n n x n n x n X e n X e n d
x n X e n X e n dX e x n n x n n
piω ω ω
pi ω ωω
ω ω ω ω ω
pi
ω ω ωω ω
pi
∞
2
=−∞
∞ 2
=−∞
= + = −
↔
= += − −
∑ ∫
∑ ∫
sites.google.com/site/ncpdhbkhn 61
Symmetry Properties (6)
0
0
1
2
1
2
( ) { [ ]cos( ) [ ]sin( ) [ ] ( ) cos( ) ( )sin( )
[ ] ( )sin( ) ( ) cos( )( ) { [ ]sin( ) [ ]cos( )
j j j
R R I R R I
n
j jj
I R II R I
n
X e x n n x n n x n X e n X e n d
x n X e n X e n dX e x n n x n n
piω ω ω
pi ω ωω
ω ω ω ω ω
pi
ω ω ωω ω
pi
∞
2
=−∞
∞ 2
=−∞
= + = −
↔
= += − −
∑ ∫
∑ ∫
If x[n] is real and even [ ] [ ]x n x n− =
( ) [ ]cos( ); ( ) [ ]sin( )
j j
R I
n n
X e x n n X e x n nω ωω ω
∞ ∞
=−∞ =−∞
= = −∑ ∑
0
1
[ ] ( ) cos( ) ( )sin( )
j j
R Ix n X e n X e n d
pi
ω ωω ω ω
pi
= − ∫
1
0
0 2 even symmetry
0
1
( ) [ ] [ ]cos( ) ( )
( )
[ ] ( )cos( ) (odd symmetry)
j
R
n
j
I
j
R
X e x x n n
X e
x n X e n d
ω
ω
pi ω
ω
ω ω
pi
∞
=
= +
→ =
=
∑
∫
sites.google.com/site/ncpdhbkhn 62
Symmetry Properties (7)
0
0
1
2
1
2
( ) { [ ]cos( ) [ ]sin( ) [ ] ( ) cos( ) ( )sin( )
[ ] ( )sin( ) ( ) cos( )( ) { [ ]sin( ) [ ]cos( )
j j j
R R I R R I
n
j jj
I R II R I
n
X e x n n x n n x n X e n X e n d
x n X e n X e n dX e x n n x n n
piω ω ω
pi ω ωω
ω ω ω ω ω
pi
ω ω ωω ω
pi
∞
2
=−∞
∞ 2
=−∞
= + = −
↔
= += − −
∑ ∫
∑ ∫
If x[n] is real and odd [ ] [ ]x n x n− = −
( ) [ ]cos( ); ( ) [ ]sin( )
j j
R I
n n
X e x n n X e x n nω ωω ω
∞ ∞
=−∞ =−∞
= = −∑ ∑
0
1
[ ] ( ) cos( ) ( )sin( )
j j
R Ix n X e n X e n d
pi
ω ωω ω ω
pi
= − ∫
0
0
2 odd symmetry
1
( )
( ) [ ]sin( ) ( )
[ ] ( )sin( ) (odd symmetry)
j
R
j
I
n
j
I
X e
X e x n n
x n X e n d
ω
ω
pi ω
ω
ω ω
pi
∞
=−∞
=
→ = −
=
∑
∫
sites.google.com/site/ncpdhbkhn 63
Symmetry Properties (8)
Ex. 1
Draw the spectra of the sequence x[n] = anu[n].
( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
= ∑
0
n j n
n
a e ω
∞
−
=
=∑
1 1If jae aω− < → <
1
1
( )j jX e ae
ω
ω−
→ =
−
1
1 (cos sin )a jω ω= − −
1
1 1
cos sin
( cos sin )( cos sin )
a ja
a ja a ja
ω ω
ω ω ω ω
− −
=
− + − −
2 2
1
1
cos sin
( cos ) ( sin )
a ja
a ja
ω ω
ω ω
− −
=
− −
2 2
1
1 2 1 2
cos sin
cos cos
a aj
a a a a
ω ω
ω ω
−
= −
− + − +
2 2
22
1
1 2 1 2
1
atan
1 21 2
cos sin
( ) ( ); ( ) ( )
cos cos
sin
( ) ( ) ; ( ) ( )
coscos
j j j j
R R I I
j j j j
a aX e X e X e X e
a a a a
aX e X e X e X e
a aa a
ω ω ω ω
ω ω ω ω
ω ω
ω ω
ω
ωω
−
−
− −
= = = = −
− + − +
→
−
= = ∠ = = −∠
− +
− +
sites.google.com/site/ncpdhbkhn 64
Symmetry Properties (9)
Ex. 1
Draw the spectra of the sequence x[n] = anu[n].
-3 -2 -1 0 1 2 3
0.8
1
1.2
1.4
1.6
1.8
2
omega (rad)
R
e
a
l
p
a
r
t
a = 0.5
a = -0.5
-3 -2 -1 0 1 2 3
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
omega (rad)
I
m
a
g
i
n
a
r
y
p
a
r
t
a = 0.5
a = -0.5
-3 -2 -1 0 1 2 3
0.8
1
1.2
1.4
1.6
1.8
2
omega (rad)
M
a
g
n
i
t
u
d
e
a = 0.5
a = -0.5
-3 -2 -1 0 1 2 3
-0.5
0
0.5
omega (rad)
A
n
g
l
e
a = 0.5
a = -0.5
sites.google.com/site/ncpdhbkhn 65
Symmetry Properties (10)
Ex. 2
Find x[n] from
1
0
,
( )
,
cj
c
X e ω
ω ω
ω ω pi
<
=
< <
0
0
21
2
[ ] ( )
t j j n
t
x n X e e d
pi
ω ω ω
pi
+
= ∫
1
2
c
c
j n
e d
ω
ω
ω
ω
pi −
= ∫
1
2
c
c
j nejn
ω
ω
ω
pi
−
=
2
cos( ) sin( )
c
c
n j n
jn
ω
ω
ω ω
pi
−
+
=
0sin( ) ,cn n
n
ω
pi
= ≠
010
2
[ ]
c
c
jx e d
ω
ω
ω
ω
pi −
= ∫
1
2
c
c
c
ω
ω
ω
ω
pi pi−
= =
k
[ ]x n
( )
jX e ω
1
0 cωcω− 0T0T−
ω
sites.google.com/site/ncpdhbkhn 66
Symmetry Properties (11)
Ex. 3
Find spectra of
0 1
0
,
[ ]
, otherwise
A n L
x n
≤ ≤ −
=
( ) [ ]
j j n
n
X e x n eω ω
∞
−
=−∞
= ∑
1
0
L
j n
n
Ae ω
−
−
=
=∑
1
1
j L
j
eA
e
ω
ω
−
−
−
=
−
2 2 2
2 2 2
/ / /
/ / /
( )
( )
j L j L j L
j j j
e e eA
e e e
ω ω ω
ω ω ω
− −
− −
−
=
−
1 2 2
2
( ) / sin( / )
sin( / )
j L LAe ω ω
ω
− −
=
2
2
21
2 2
sin( / )
( )
sin( / )
sin( / )
( ) ( )
sin( / )
j
j
LX e A
LX e A L
ω
ω
ω
ω
ω ω
ω
=
→
∠ = ∠ − − +∠
0 1 2 3 44− 3− 2− 1−
A
[ ]x n
n
-3 -2 -1 0 1 2 3
0
0.2
0.4
0.6
0.8
1
omega (rad)
M
a
g
n
i
t
u
d
e
- 3 -2 -1 0 1 2 3
-15
-10
-5
0
5
10
15
omega (rad)
A
n
g
l
e
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier
Transform
a) Relationship to the z – Transform and Periodicity
b) Symmetry Properties
c) Operational Properties
d) Correlation of Signals
e) Signals with Poles on the Unit Circle
sites.google.com/site/ncpdhbkhn 67
sites.google.com/site/ncpdhbkhn 68
Operational Properties (1)
sites.google.com/site/ncpdhbkhn 69
Operational Properties (2)
[ ]c
j n
e x n
ω [ ]( )c
jX e ω ω−
DTFT
Frequency shifting
⊗[ ]x n [ ]y n
[ ] c
j n
c n e
ω
=
0
( )
jX e ω
ω
2pi− 2pimω− mω
⋯ ⋯
0
( )
[ ]c
jY X e ω ω−=
ω
2pi− 2pi 2 cpi ω+cω
⋯ ⋯
c m
ω ω−
c m
ω ω+
sites.google.com/site/ncpdhbkhn 70
Operational Properties (3)
sites.google.com/site/ncpdhbkhn 71
Operational Properties (4)
[ ]c
j n
e x n
ω 1 1
2 2
[ ] [ ]
( ) ( )c c
j jX e X eω ω ω ω+ −+
DTFT
Modulation
⊗[ ]x n [ ]y n
[ ] cos( )
c
c n nω=
0
( )
jX e ω
ω
2pi− 2pimω− mω
⋯ ⋯
0
( )
jY e ω
ω
2pi− 2pi
⋯ ⋯
c
ω
c
ω−
0 5 ( ). [ ]cjX e ω ω−0 5 ( ). [ ]cjX e ω ω+
sites.google.com/site/ncpdhbkhn 72
Operational Properties (5)
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier
Transform
a) Relationship to the z – Transform and Periodicity
b) Symmetry Properties
c) Operational Properties
d) Correlation of Signals
e) Signals with Poles on the Unit Circle
sites.google.com/site/ncpdhbkhn 73
sites.google.com/site/ncpdhbkhn 74
Correlation of Signals (1)
[ ] [ ] [ ],xy
n
r l x n y n l l
∞
=−∞
= − −∞ < < ∞∑
[ ] [ ]
xy yxr l r l= −
1 1
[ ]
[ ]
xy
xy
x y
r l
l
E E
ρ− ≤ = ≤
[ ] [ ]* [ ]
xyr l x l y l= −
[ ] [ ] [ ] [ ]* [ ],
k
y n x k h n k x n h n n
∞
=−∞
= − = −∞ < < ∞∑
[ ] [ ]* [ ]
xyr l x l y l= − ( ) ( ) ( )
j j
xyR X e Y e
ω ωω −=
DTFT
[ ] [ ]* [ ]
x
r l x l x l= − 2( ) ( )j
x
R X e ωω =
DTFT
sites.google.com/site/ncpdhbkhn 75
Correlation of Signals (2)
Ex. 1
Find the autocorrelation of the sequence x[n] = anu[n].
[ ] [ ] [ ]x
n
r l x n x n l
∞
=−∞
= −∑
[ ] [ ]
n l
x n x n l
∞
=
= −∑
n n l
n l
a a
∞
−
=
=∑
1 1 2 2( ) ( )l l l l l l l l la a a a a a− + + − + + −= + +
2 41( ...)la a a= + + +
21
la
a
=
−
Fourier Representation of Signals
1. Sinusoidal Signals and their Properties
2. Fourier Representation of Continuous – Time Signals
3. Fourier Representation of Discrete – Time Signals
4. Summary of Fourier Series and Fourier Transforms
5. Properties of the Discrete – Time Fourier
Transform
a) Relationship to the z – Transform and Periodicity
b) Symmetry Properties
c) Operational Properties
d) Correlation of Signals
e) Signals with Poles on the Unit Circle
sites.google.com/site/ncpdhbkhn 76
sites.google.com/site/ncpdhbkhn 77
Signals with Poles on the Unit
Circle
1
1 ROC 1
1
[ ] ( ) , :u n X z z
z−
→ = >
−
1
0
0 1 2
0
1 ROC 1
1 2
(cos )
cos( ) [ ] ( ) , :
(cos )
z
n u n X z z
z z
ω
ω
ω
−
− −
−
→ = >
− +
Các file đính kèm theo tài liệu này:
- fourier_representation_2014_mk_9077.pdf