Light types, their properties, and typical uses
Back and forth. Once again, you can also hit the envelope button to the right of the arrows and open a graph editor in which you can change the intensity over time. Below the intensity option are Intensity Falloff and Range/Nominal Distance. You must set a distance and choose between four falloff types. If you choose Off, the light intensity will remain the same whether the light is one centimeter or one million kilometers away. If you choose any of the other options, you will need to set the Range/Nominal Distance parameter. This setting determines the maximum distance the light reaches. For example, if I set a Linear falloff and a Range/Nominal Distance of 10 meters, there would be no light transmitted from that light 10 meters away from it. If I set Intensity Falloff to Linear, the light intensity would be 100% at the center of the source, 50% five meters from the source, and 0% 10 meters from the source. It is very linear and refers to the distance at which light falloff ends. If the falloff parameter is set to Inverse Distance or Inverse Distance^2, the Range/Nominal Distance refers to the distance at which light falloff begins. Note: A linear falloff is not physically accurate, but it calculates much more quickly than real light falloff, which is the inverse square of the distance traveled by the light. It’s like this: A light emits a specific quantity of light. When the light is near the lightbulb, it is very dense and compressed together into a small area. As the light travels away from the light, it spreads out and dissipates. The light is less dense and, therefore, provides less illumination on a surface. You can also select a curved falloff shape instead of linear. You can choose between inverse to the distance traveled or the inverse square of the distance traveled. Inverse square is what occurs in nature, although I have found that a linear falloff usually looks fine and seems to calculate faster. You will discover that you can apply intensity falloff to all light types except distant lights. Falloff is not allowed for distant lights because a distant light is supposed to simulate the sun. While the sun does indeed have an intensity falloff, it is so astronomically huge (measured in millions of light-years) that any amount of falloff occurring on our puny little planet is probably immeasurable and certainly not visible. Smaller light sources such as lightbulbs and candles have an easily visible intensity falloff. If you light a candle in a dark room, you will see that there is a relatively intense area of light quite close to the candle that falls off quickly
Các file đính kèm theo tài liệu này:
- lightwave_3d_8_lighting_wordware_game_and_graphics_library_00003_9234.pdf