Hệ thống thông tin đất - Chương 5: Mô tả thông tin trong hệ thống thông tin địa lý
Trong hệ thống raster, những ký hiệu là vị trí ô lưới trong ma trận. Trong hệ
thống vector, những ký hiệu định vị có thể là điểm, đường (line), curve,
boundary, or vector; hay vùng: area, region, hay polygon.
Mối liên kết biểu tượng và ý nghĩa của chúng là việc gán cho bất kỳ một yếu tố
địa lý ít nhất một nghĩa xác định, tên hay chỉ số gọi là ID của nó, dữ liệu phi
không gian của yếu tố thường lưu trữ trong một hay nhiều file riêng biệt theo
số ID này.
28 trang |
Chia sẻ: nguyenlam99 | Lượt xem: 877 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Hệ thống thông tin đất - Chương 5: Mô tả thông tin trong hệ thống thông tin địa lý, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chương 5
MÔ TẢ THÔNG TIN TRONG
HTTTĐL
Mức độ mô tả thông tin
H5.1 Mức độ mô tả thông tin
Những MHDL HTTTĐL
Một CSDL HTTTĐL thể hiện một khía cạnh thế giới thực. Mỗi CSDL
HTTTĐL là một tập hợp của dữ liệu có liên quan tới không gian, những sự
kiện phản ánh thực tế. Ta có khái niệm:
“Mô hình (Model) là một tập hợp các nguyên tắc để mô tả những dữ liệu được
tổ chức hợp lý trong CSDL, đôi khi nó ngụ ý cả những chú thích, chú giải mô
tả dữ liệu và tập hợp những thao tác vận hành dữ liệu này”
Trong HTTTĐL, chúng ta sử dụng “MHDL” để xây dựng mô hình máy tính
trình bày những một khía cạnh của thế giới thực mà chúng ta quan tâm.
MHDL sử dụng trong HTTTĐL
Quá trình tổ chức thông tin liên quan với quá trình tổ chức dữ liệu (miêu tả,
biểu diễn thế giới thực bằng cách sử dụng dữ liệu). Mức thấp nhất của mô tả
thông tin được sử dụng thuật ngữ mô hình dữ liệu-MHDL (Peuquet, 1991).
Có nhiều MHDL được sử dụng trong HTTTĐL, gồm:
Mô hình tổng quát
Ê Mô hình mì ống – (Spaghetti model)
MHDL cơ bản – (Basic data models)
Ê Vector
Ê Raster
Mô hình không gian – (Spatial models)
Ê Mô hình hình học phẳng.
Ê Mô hình topology phẳng
Mô hình bề mặt - (Surface models)
Ê Mô hình số độ cao-(Digital Elevation Models -DEMs)
Ê Mô hình mạng tam giác –(Triangular Irregular Network -TIN)
Mô hình toán học-(Mathematical models)
Mô hình khái niệm-(Conceptual models)
Ê Mô hình Thực thể - mối quan hệ (Entity-Relationship (ER))
Ê Mô hình Thực thể - mối quan hệ nâng cao (Enhanced Entity-
Relationship (EER))
Ê Mô hình thực thi – (An implementation model)
Ê Mô hình quan hệ-(Relational model)
Mô hình ngữ nghĩa – (Semantic models)
Ê Mô hình hướng đối tượng (Object-oriented model)
Ê Mô hình chức năng (Functional model)
Những mô hình có thứ bậc-(Hierarchical models)
Ê quadtrees, strip trees
Mô hình độc quyền (Proprietary models)
Ê Arc/Info
Ê ERDAS
Ê Geovision
Ê Grass
Ê Caris
Ê DBMS based
Ê Ingres
Ê Oracle
Ê Postgres
Một số mô hình sẽ được nói tới trong sách này, phần lớn chúng là những
MHDL mô tả.
HTTTĐL gồm những mô hình mô tả những khía cạnh lựa chọn của thế giới
thực. Thực tế không có giới hạn những khía cạnh này, vì vậy không có giới hạn
về những MHDL . Do vậy, ý nghĩa MHDL là sự hữu ích của nó.
Cấu trúc dữ liệu
Mức cao hơn MHDL là cấu trúc dữ liệu, liên quan với thiết kế và quá trình tổ
chức thông tin. Thể hiện định hướng tổ chức dữ liệu thường liên quan tới phần
mềm không xem xét phần cứng.
Cấu trúc file
Thể hiện định hướng phần cứng của dữ liệu, lưu trữ vật lý dữ liệu trong một số
loại như ổ cứng, băng từ hay liên quan tới phần cứng độc lập nào đó.
Cấu trúc dữ liệu mô tả
Cấu trúc dữ liệu mô tả thể hiện thiết kế và thực hiện của quá trình tổ chức
thông tin phi thuộc tính không gian (non-spatial data).
Như phần lớn các hệ thống thông tin thực hiện ngày nay dựa trên mô hình
CSDL Quan hệ- relational và hướng đối tượng object-oriented.
Cấu trúc dữ liệu quan hệ
5. 3 Cấu trúc dữ liệu quan hệ
Đặc điểm cấu trúc dữ liệu quan hệ (Hình 5.3)
Ì Mối quan hệ là một tập hợp (ký hiệu, biểu tượng, đặc điểm của một yếu tố)
tương ứng như những hàng trong bảng.
Ì Số lượng của tập hợp của yếu tố trong mối quan hệ được gọi là phần tử.
Ì Các phần tử tạo nên thuộc tính của đối tượng tương ứng với cột trong bảng
Ì Số lượng thuộc tính gọi là mức độ
Ì Mỗi mối quan hệ xác định duy nhất gọi là khóa gốc. Khóa gốc là cột hay
phối hợp cột sao cho giá trị một hàng có cùng PK là duy nhất, điều này cho
phép sử dụng PK liên kết dữ liệu trong những bảng khác nhau.
Ì Những bảng dữ liệu khác có cùng khóa gốc nhưng được gọi là khóa ngoài
foreign keys .
Ì Để đảm bảo tính toàn vẹn dữ liệu, mối quan hệ phải chuẩn hóa và dựa trên
dạng chuẩn hóa.
Cấu trúc dữ liệu hướng đối tượng (Object-oriented data structure)
Hình 5.4 Cấu trúc dữ liệu hướng đối tượng
Không giống mô hình quan hệ, there is not a formalized object-oriented data
structure
Cấu trúc dựa trên sự thực hiện các hướng đối tượng khác nhau sẽ có cấu trúc
khác nhau, có thể giải thích trong thuật ngữ tổng quát khái niệm tính xác định-
object identify, Cấu trúc-object structure và type constructors (Elmasri and
Navathe, 1994)
Một đối tượng phức tạp được cấu trúc từ những đối tượng đơn giản.
Mỗi đối tượng được xem như 3 phần (i, c, v) trong đó:
i = Xác định duy nhất (he object's unique identifier (OID))
c = Cấu trúc (chỉ ra cơ chế tạo ra giá trị đối tượng)
v = giá trị đối tượng (object value)
MHDL không gian
Có hai mô hình cơ bản để biểu diễn thành phần không gian của thông tin địa lý
đó là raster và vector.
Hình 4.8 Mô hình raster và vector biểu diễn Thế giới thực
Mô hình Raster (Raster model)
Mô hình raster dựa trên hệ thống hiển thị, định vị và lưu trữ dữ liệu địa lý bằng
cách sử dụng ma trận lưới ô (cell). Những biểu diễn tọa độ của mỗi pixcel là
trung tâm (centroid) của nó. Lần lượt mỗi cell hay pixel có những thuộc tính dữ
liệu riêng biệt được gán cho chúng. Độ phân dải dữ liệu raster tùy thuộc vào
kích cỡ pixel hay kích cỡ lưới, có thể từ vài milimet tới nhiều kilomet. Mô hình
raster là những dữ liệu mảng hai chiều (two-dimensional), các thông tin khác
nhau được lưu trữ như lớp phủ rừng (forest cover), kiểu đất (soil type), sử dụng
đất (land use), môi trường đất ướt (wetland habitat), hay những kiểu dữ liệu
khác.
Với mô hình raster, diện tích nghiên cứu được chia thành lưới đều đặn của
những ô, gồm các hàng và cột, toạ độ pixel t ính từ góc trái trên.
Mô hình Vector (Vector model)
Mô hình vector là mô hình "điểm-đường-vùng" biểu diễn các đối tượng dạng
điểm, đường và vùng. Hệ tọa độ Đềcac (Cartesian coordinates) (ví dụ x, y) và
những thuật toán máy tính về tọa độ xác định những điểm được sử dụng trong
hệ thống vector.
Những đường hay cung là một chuỗi các điểm. Diện hay vùng (polygon) là
cũng lưu trữ như thứ tự các điểm, nhưng điểm đầu và cuối có cùng vị trí, diện
được đóng kín và xác định.
Cấu trúc dữ liệu đồ họa (Graphical data structures)
Cấu trúc dữ liệu Raster (Raster data structure)
Cấu trúc dữ liệu Raster
Trong Cấu trúc dữ liệu Raster không gian được chia nhỏ thành những lưới ô
(vuông) đều đặn hay lưới biết như những yếu tố ảnh-picture elements (pixels).
Ì Vị trí mỗi ô xác định số hàng và số cột của nó.
Ì Diện tích đại diện mỗi ô xác định độ phân dải không gian của dữ liệu.
Ì Vị trí yếu tố địa lý chỉ xác định bởi pixel gần nhất.
Ì Giá trị lưu trong mỗi ô lưới chỉ thị những kiểu đối tượng, hiện tượng hay
điều kiện tìm thấy trong chúng ở vị trí riêng biệt.
Ì Những kiểu giá trị khác nhau có thể mã hóa: số nguyên (integers), số thực
(real numbers) và thứ tự.
Ì Giá trị nguyên thường là mã số đối tượng, tham chiếu tới tên trong bảng
liện kết (gọi là look-up table) hay chỉ dẫn.
Ì Những thuộc tính khác nhau ở cùng một vị trí ô được lưu trữ trong những
chủ đề khác nhau hay những lớp
for example, raster data pertaining to the soil type, forest cover and slope
covering the same area are stored separately in a soil type theme, a forest cover
theme and a slope theme
there are several variants to the regular grid raster data structure, including:
irregular tessellation (e.g. triangulated irregular network (TIN)), hierarchical
tessellation (e.g. quad tree) and scan-line (Peuquet, 1991)
Một cách tổng quát, dữ liệu raster đòi hỏi ít xử lý hơn dữ liệu vector, nhưng nó
sử dụng nhiều không gian lưu trữ trong máy tính hơn.
Trong kỹ thuật viễn thám, quá trình quét của bộ cảm nhận (sensor) trên vệ tinh
lưu trữ dữ liệu ở dạng raster.
Mô hình địa hình - Digital terrain models (DTM) và mô hình số độ cao-digital
elevation models (DEM) là những ví dụ dữ liệu raster (Koeln et al 1994 and
Huxhold 1991).
Hình 4.5 Raster biểu diễn thế giới
Cấu trúc dữ liệu Vector (Vector data structure)
Hệ thống vector có khả năng phân giải rất cao (» 0.001 inch) và in ấn xuất bản
tương tự như bản đồ làm bằng tay. Hệ thống này làm việc tốt với phương vị,
khoảng cách và những điểm, nhưng nó đòi hỏi những cấu trúc phức tạp và ít
tương thích với dữ liệu vệ tinh (remote sensing data). Dữ liệu vector cần ít
không gian lưu trữ và duy trì mối quan hệ hình học dễ dàng.
Hình 4.6 Vector biểu diễn thế giới (Koeln et al 1994; and Huxhold 1991)
Có nhiều cấu trúc dữ liệu vector, bao gồm:
Spaghetti
Spaghetti
Có lẽ đơn giản nhất trong các mô hình HTTTĐL là mô hình spaghetti model,
Về bản chất là mô hình vẽ bản đồ, với chúng những điểm, đường và những
chuỗi ký tự được biểu diễn đơn thuần là vị trí.
Hầu như không có mô tả rõ ràng cấu trúc Topology.
Ranh giới chung giữa 2 polygon kề nhau được ghi 2 lần.
Mô hình này không hữu hiệu trong phân tích không gian, tuy nhiên nó rất hữu
hiệu trong việc tái sản xuất bản đồ số mà không cần lưu trữ quan hệ không
gian.
Hình 4.9 MHDL Spaghetti
Mô hình (line-for-line) tương tự như bản đồ giấy thường là dữ liệu tạm thời
trong số hóa.
Spaghetti
Hierarchical (cấu trúc phân cấp)
hierarchical
Hình 4.3 MHDL phân cấp
Topological (cấu trúc hình học)
Cấu trúc dữ liệu vector trợ giúp mục đích duy trì mối quan hệ không gian bằng
cách lưu giữ thông tin liền kế nhau.
topological
Mô hình topology được sử dụng rộng rãi trong việc mã hóa các mối quan hệ
không gian. Topology là phương pháp toán học được dùng để định nghĩa các
quan hệ không gian.
Một số khái niệm trong mô hình topology trong phần mềm ArcInfo:
Arc (cung): chuỗi các điểm bắt đầu và kết thú tại node.
Node (điểm nút): - Là điểm giao nhau của 2 hay nhiều arc.
- Điểm kết thức 1 arc
- Điểm riêng biệt
Polygon (vùng): là chuỗi khép kín của các arc thể hiện ranh giới của vùng.
Topology được ghi trong 3 bảng dữ liệu cho 3 loại yếu tố không gian: polygon,
node và arc. Dữ liệu về tọa độ được ghi trong bảng thứ tư.
Dữ liệu thuộc tính thường được lưu trữ trong các bảng quan hệ, trong đó 1
trường chứa ID của đối tượng không gian.
Ưu điểm: Phân tích không gian được thực hiện không sử dụng dữ liệu tọa độ,
giảm thời gian phân tích.
Nhược: Cập nhật hóa mô hình topology mất nhiều thời gian.
Hình 4.10 node topology
Hình 4.11 arc topology
Hình 4.12 polygon topology
4.3. So sánh hệ thống Raster và Vector (Vector hay Raster?)
PP Thuận tiện Không thuận tiện
Raster
Cấu trúc đơn giản
Tương thích với dữ liệu vệ tinh và
dữ liệu ảnh quét.
Qui trình phân tích không gian đơn
giản.
Yêu cầu lưu trữ nhiều trên máy tính
Tùy thuộc vào kích cỡ pixel, sản phẩn in ấn không đẹp
Chuyển đổi hệ thống tọa độ khó khăn
Rất khó mô tả mối quan hệ hình học
Vector
Yêu cầu lưu trữ ít
Mối quan hệ hình học được duy trì
Tạo những bản in đẹp
Cấu trúc phức tạp
Không thích hợp dữ liệu viễn thám
Phần cứng và phần mềm rất đắt tiền
Một số phân tích không gian rất khó khăn.
phân tích chồng lớp các bản đồ vector (Overlaying)
mất nhiều thời gian
So sánh hai mô hình, câu hỏi được đặt ra không phải là “mô hình nào là tốt?”
mà là dưới điều kiện nào thì cái này tốt hơn cái kia?. Trả lời câu hỏi thứ hai,
chúng ta xem xét bốn vấn đề:
Ê Độ chính xác tọa độ. coordinate precision
Ê Tốc độ xử lý. speed of processing
Ê Những yêu cầu lưu trữ. storage requirements
Ê Kiểu của dữ liệu đại diện. type of data being represented
5.4 Cấu trúc dữ liệu quan hệ địa lý (The georelational data
structure)
CTDLQHĐL được phát triển để điều khiển, xử lý dữ liệu địa lý:
Nó cho phép liên kết, kết hợp giữa không gian (graphical) và dữ liệu phi không
gian (non-spatial) (mô tả).
Nó là cấu trúc sử dụng các phần mềm vector HTTTĐL.
Cả dữ liệu không gian và phi không gian lưu trữ trong những bảng quan hệ.
Ê Dữ liệu điểm, đường, vùng lưu trữ trong những bảng thuộc tính riêng
biệt (separate feature attribute tables (FAT) (Hình )
Những yếu tố đồ họa cơ bản
Cấu trúc dữ liệu quan hệ địa lý
Trong FAT, mỗi thực thể gán duy nhất feature identifier (FID)
Thông tin hình lưu trữ dùng phương pháp tương tự cấu trúc dữ liệu hình học
mô tả bên trên.
Dữ liệu phi không gian lưu trữ trong những bảng quan hệ
o Những thực thể không gian và những bảng quan hệ phi không gian
liên kết bằng FID cchung (hình)
4.1. Tổ chức dữ liệu thuộc tính
HTTTĐL sử dụng mô hình raster và vector để mô tả vị trí, nhưng những bản
ghi về những hiện tượng thế giới thực theo từng vị trí và những thuộc tính về
chúng được biểu diễn như thế nào ?.
HTTTĐL dđã cung cấp mối liên kết giữa dữ liệu không gian và phi không
gian. Những mối liên kết này làm cho HTTTĐL thông minh "intelligent", hơn
nữa người sử dụng có thể lưu trữ và kiểm tra thông tin về “Cái đó ở đâu ?-
where things are?” và “Chúng là cái gì-what they are”.
Dữ liệu không gian-Spatial Data >> Phi không gian (Non-Spatial Data )
Yếu tố địa lý-Geographic Features >> Thuộc tính-Attributes
Có thể khái quát đây là mối quan hệ giữa:
Vị trí biểu tượng >> Ý nghĩa chúng
Trong hệ thống raster, những ký hiệu là vị trí ô lưới trong ma trận. Trong hệ
thống vector, những ký hiệu định vị có thể là điểm, đường (line), curve,
boundary, or vector; hay vùng: area, region, hay polygon.
Mối liên kết biểu tượng và ý nghĩa của chúng là việc gán cho bất kỳ một yếu tố
địa lý ít nhất một nghĩa xác định, tên hay chỉ số gọi là ID của nó, dữ liệu phi
không gian của yếu tố thường lưu trữ trong một hay nhiều file riêng biệt theo
số ID này.
Thông tin vị trí được liên kết tới những thông tin xác định trong CSDL.
Hình 4.1 Nối kết dữ liệu không gian và thuộc tính
Các file đính kèm theo tài liệu này:
- chuong_5_mo_hinh_du_lieu_gis_3994.pdf