Bài giảng Engineering electromagnetic - Chapter VIII: Poisson’s & Laplace’s Equations - Nguyễn Công Phương
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis
48 trang |
Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 201 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter VIII: Poisson’s & Laplace’s Equations - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Poisson’s & Laplace’s Equations
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson's Equation (1)
∇ = ρ
Gauss’s Law: .D v
= ε →∇ =∇ε =−∇ ε ∇ = ρ
DE .D .() E . (V ) v
0 ρ
Gradient: E = −∇V →∇∇. V =− v
ε
(Poisson's Equation)
∂V ∂ V ∂ V
∇=V a + a + a
∂xx ∂ y y ∂ z z
∂A ∂A ∂A
∇=.A x +y + z
∂x ∂ y ∂ z
∂ 2 2 2
∂∂VV ∂Vy ∂ ∂ ∂∂∂V V V
→∇∇=. V x + +z =++
∂∂xx ∂∂ yy ∂∂ zz ∂ xy2 ∂ 2 ∂ z 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson's Equation (2)
ρ
∇∇. V =− v
ε
2 2 2
2 2 2 ∂V ∂ V ∂ V ρ
∂V ∂ V ∂ V ∇=2V + + =− v
∇∇=. V + + ∂2 ∂ 2 ∂ 2 ε
∂x2 ∂ y 2 ∂ z 2 x y z
Define ∇. ∇ = ∇2 (rectangular)
1∂∂V 1 ∂∂2 V 2 V ρ
ρ + + =− v (cylindrical)
ρρ∂∂ ρρϕ 2 ∂∂ 2z 2 ε
1∂∂V 1 ∂∂ V 1 ∂ 2 V ρ
r 2 + sin θ + =− v
rrrr2∂∂ 2 sinθθ ∂∂ θ r 2 sin 2 θϕ ∂ 2 ε
(spherical)
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Ex. Poisson’s Equation (3)
Find the Laplacian of the following scalar fields:
a) A= 2 xy2 z 3
cos2 ϕ
b) B =
ρ
20sin θ
c) C =
r3
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Laplace’s Equation
∂2V ∂ 2 V ∂ 2 V ρ
Poisson's Equation: ∇=2V + + =− v
∂x2 ∂ y 2 ∂ z 2 ε
ρ =
v 0
∂2V ∂ 2 V ∂ 2 V
∇=2V + + = 0 (Laplace’s equation, rectangular)
∂x2 ∂ y 2 ∂ z 2
1∂∂V 1 ∂∂2 V 2 V
ρ + + = 0 (cylindrical)
ρ∂∂ ρ ρ ρ2 ∂∂ ϕ 2z 2
1∂∂V 1 ∂∂ V 1 ∂ 2 V
r2 + sinθ + = 0
rrrr2∂∂ 2 sinθ ∂∂ θ θ r 2 sin 2 θ ∂ ϕ 2
(spherical)
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Uniqueness Theorem (1)
∂2V ∂ 2 V ∂ 2 V
∇=2V + + = 0
∂x2 ∂ y 2 ∂ z 2
Assume two solutions V1 & V2, :
∇2V = 0
1 →∇2 (V − V ) = 0
∇2 = 1 2
V2 0
→ = =
Assume the boundary condition Vb V1b V 2 b V b
∇.D()V = V ( ∇ .D ) + D. () ∇ V
= −
V V1 V 2
= ∇ −
D (V1 V 2 )
→∇ −∇− = − ∇∇− +
.[(VV12 ) ( VV 12 )] ( VV 12 )[ . ( VV 12 )]
+∇ − ∇ −
(VV12 )(. VV 12 )
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Uniqueness Theorem (2)
∇ −∇− =− ∇∇− +∇− ∇−
.[(VVVV1212 )( )]( VV 12 )[ . ( VV 12 )]( VV 12 )( . VV 12 )
→∇−∇−.[(VV ) ( VVdv )] = ( VV −∇∇− )[ . ( VVdv )] +
∫V 1212 ∫ V 12 12
+∇(V − V )(. ∇ V − Vdv )
∫V 12 12
Divergence theorem: DSD.d= ∇ . dv
∫S ∫ V
→∇−∇− = −∇−
.[(VV1212 ) ( VVdv )] [( VV 12b b ) ( VV 12 b b )] . d S
∫V ∫ S
= =
V1b V 2 b V b
→∇.[(V −∇− V ) ( V V )] dv = 0
∫V 1 2 1 2
→=0(VV − )[( ∇∇−. VVdv )] +∇− ( VV )( . ∇− VVdv )
∫V 12 12 ∫ V 1212
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Uniqueness Theorem (3)
(VV− )[( ∇∇−. VVdv )] +∇−∇− ( VV )( . VVdv )0 =
∫V 12 12 ∫ V 1212
∇∇ − =∇2 − =
. (VV12 ) ( VV 12 )0
→∇− ∇− = =[ ∇ − ]2
(V V )(. V V ) dv 0 (V1 V 2 ) dv
∫V 12 12 ∫V
[∇ −]2 ≥
(V1 V 2 ) 0
→∇ −2 = →∇ − =
[ (V1 V 2 )] 0 (V1 V 2 ) 0
→ − =
∂V ∂ V ∂ V V1 V 2 const
∇=V a + a + a
∂xx ∂ y y ∂ z z
V1 = V2
At boundary V1 = Vb1, V2 = Vb2
→ const = V – V = 0
= = b1 b2
V1b V 2 b V b
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (1)
Ex. 1
Assume V = V(x) d2 V
∂2V ∂ 2 V ∂ 2 V → = 0 →V = Ax + B
∇=2V + + = 0 dx 2
∂x2 ∂ y 2 ∂ z 2 =
V= V 1
x x 1
=
V= V 2
x x 2
−
= V1 V 2
A
x− x Vxx(− )( − Vxx − )
→ 1 2 →V = 1 22 1
− −
Vx21 Vx 12 x1 x 2 V x
B = →V = 0
x− x V = 0
1 2 x=0 d
V= V
x= d 0
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (2)
Ex. 1
x
V = V(x)
V x
V = 0 →V = 0 Conductor surface x = d
x=0 d
V= V
x= d 0 E = −∇V
V
→ = − 0 V Conductor surface x = 0
E a x → = − ε 0
d D a x
d
DE= ε
V V V
→D = D =− ε 0 a →D = − ε 0 →ρ =D =− ε 0
Sx=0 d x N d S N d
−εV V S Q ε S
→Q =ρ dS = 0 dS = − ε 0 →C = =
∫SS ∫ S
d d V0 d
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (3)
Ex. 2
Assume V = V(ρ) (cylindrical)
1 ∂ ∂ V
1∂∂V 1 ∂∂2 V 2 V →ρ = 0
∇=2V ρ + += 0 ρ∂ ρ ∂ ρ
ρ∂∂ ρ ρ ρ2 ∂∂ ϕ 2z 2
1 d dV d dV dV
→ρ = 0 →ρ = 0→ρ = A
ρd ρ d ρ dρ d ρ dρ
→V = Aln ρ + B
V
= 0 ln(b /ρ )
= + = A →V = V
Vρ= AaBVln 0 lna− ln b 0
a → ln(b / a )
V= AbBln += 0 ( ba > ) Vln b
ρ=b B = − 0
lna− ln b
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (4)
Ex. 2
Assume V = V(ρ) (cylindrical)
ln(b /ρ )
2 2 → =
1∂∂V 1 ∂∂ V V V V 0
∇=2V ρ + += 0 ln(b / a )
ρ∂∂ ρ ρ ρ2 ∂∂ ϕ 2z 2
V0
→E = −∇V = a ρ
ρ ln(b / a )
ε
V0
→D ρ= = = ρ
N( a ) aln( b / a ) S
εV2 π aL Qε2 π L
→Q =ρ dS = 0 →C = =
∫S S
aln( b / a ) V0 ln( b / a )
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (5)
Ex. 3
z
Assume V = V(φ) (cylindrical)
∂∂ ∂∂2 2 Air gap
2 1V 1 V V
∇=V ρ + += 0
ρρ∂∂ ρ ρϕ2 ∂∂ 2z 2
1 ∂2V ∂2V
→ = → = →V = Aϕ + B
2 2 0 2 0
ρ∂ ϕ ∂ϕ α
= ϕ
B 0 →V = V
V= B = 0 0 α
ϕ =0 → V
=α + = A = 0
Vϕ= α A BV 0 α
V
→E = −∇V = − 0 a
αρ ϕ
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (6)
Ex. 4
Assume V = V(θ) (spherical)
∂∂ ∂∂ ∂ 2
21 2 V 1 V 1 V
∇=V r + sinθ + = 0
rrrr2∂∂ 2 sinθθ ∂∂ θ r 2 sin 2 θϕ ∂ 2
1 ∂ ∂ V
→sinθ = 0
r 2 sin θ∂ θ ∂ θ ∂ ∂ V dV
→sinθ = 0 →sin θ = A
∂θ ∂ θ dθ
Assume r ≠ 0; θ ≠ 0; θ ≠ π
dθ dθ θ
→dV = A →V = A + B =Aln tan + B
sin θ ∫ sin θ 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (7)
Ex. 4
θ
Assume V = V(θ) →V = Aln tan + B
2 α
V = 0
θ= π / 2 V = V0
=α < π
Vθ= α V 0 ( / 2) Air gap
θ
V = 0
ln tan ∂
2 1 V V 0
→V = V →E =−∇V =− aθ =− a θ
0 α r ∂θ α
ln tan rsinθ ln tan
2 2
εV
→ρ =D = ε E =− 0
S N α
rsinα ln tan
2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Examples of the Solution of Laplace’s Equation (8)
Ex. 4
εV
Assume V = V(θ) →ρ = − 0
S α
r sinα ln tan α
2 V = V
εV 0
→=Qρ dS =− 0 dS
∫SS ∫ S α Air gap
rsinα ln tan
2
dS= rsin α d ϕ dr V = 0
−εV∞ 2π rsin α ddr ϕ −2πε V ∞
→Q = 0 ∫ ∫ = 0 ∫ dr
α 0 0 r α 0
sinα ln tan ln tan
2 2
Q2πε r
→C = ≐ 1
V α
0 ln cot
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn 2
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
ρ
v
Examples of the Solution of ρ
v0
Poisson’s Equation (1) 1
p-type n-type
ρ= ρ x x 0,5
v2 v 0 sech th
–5 –4 –3 –2 –1
a a − ρ
x− x v
=2 = e e 1 2 3 4 5
( sechx− ; th x − ) –0,5 x/ a
eexx+ ee xx +
ρ –1
∇2 = − v ε
Poisson’s Equation : V Ex
ε ρ
dV2 2ρ xx –5 –4 –3 –2 –1 2 v0a
→ = − v0 sech th
2 ε E 1 2 3 4 5
dx a a x –0,5 x/ a
dV2ρ a x
→ =v0 sech + C –1
dxε a 1 2ρ a x
→=−Ev0 sech − C
dV x ε 1 → =
E = − a C1 0
x → →
dx If x ± ∞ then Ex 0
2ρ a x
→E = − v0 sech
x ε a
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
ρ
v
Examples of the Solution of ρ
v0
Poisson’s Equation (2) 1
p-type n-type
ρ= ρ x x 0,5
v2 v 0 sech th
a a ρ –5 –4 –3 –2 –1
ρ v 1 2 3 4 5
Poisson’s equation : ∇2V = − v
ε –0,5 x/ a
–1
2ρ a x ε
→E = − v0 sech Ex
x ε ρ
a –5 –4 –3 –2 –1 2 v0a
ρ 2
4 v0a x/ a E 1 2 3 4 5
→V =arctg e + C x –0,5
ε 2 x/ a
2 –1
4ρ a π πε V
Supp. V = 0 →0 =v0 + C 0,5
x=0 2 ρ 2
ε 4 2 v0a
0,25
ρ 2 π –5 –4 –3 –2 –1
4 v0a x/ a
→V =arctg e − V 1 2 3 4 5
ε 4 –0,25 x/ a
–0,5
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
ρ
v
Examples of the Solution of ρ
v0
Poisson’s Equation (3) 1
ρ= ρ x x p-type n-type
v2 v 0 sech th 0,5
a a ρ –5 –4 –3 –2 –1
4ρ a2 π v 1 2 3 4 5
V=v0 arctg e x/ a − –0,5 x/ a
ε
4 –1
2πρ a2
V= V − V = v0
0 x→∞ x →−∞ ε
xx∞ xx
Q==ρρ dv2 sech th dv = S 2 ρ sech th dx = 2 ρ aS
∫Vvv ∫ V 0aa ∫ 0 v 0 aa v 0
ρ ε
→ = 2 v0V 0
Q S ρ ε ε S
π →C = S v0 =
π π
dQdV dQ 2V0 2 a
I= = C0 →= C
dt dt dV 0
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (1)
• Previous examples assumed that V varies with one of the
three coordinates
• The product solution can be used to solve for V(x, y)
∂2V ∂ 2 V ∂ 2 V
∇=2V + + = 0 ∂2V ∂ 2 V
∂x2 ∂ y 2 ∂ z 2 → + = 0
∂x2 ∂ y 2
V= Vxy( , )
• Assume V = XY , X = X(x), Y = Y(y)
∂2X ∂ 2 Y dX2 dY 2
→Y + X = 0 →Y + X = 0
∂x2 ∂ y 2 dx2 dy 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (2)
dX2 dY 2 1dX2 1 dY 2 1dX2 1 dY 2
Y+ X = 0 → + = 0 → = −
dx2 dy 2 X dx2 Y dy 2 X dx2 Y dy 2
1 d2 X
involves no y
X dx 2
1 d2 Y
− involves no x
Y dy 2
2
1 d X = α 2
2
→ X dx
2
−1 d Y = α 2
Y dy 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (3)
V= V(,)ρ ϕ = R ()() ρ Φ ϕ
ρ ∂ ∂R 1 ∂2 Φ
1∂∂V 1 ∂∂2 V 2 V →ρ + = 0
ρ + + = 0 R ∂ρ ∂ ρ Φ∂ ϕ 2
ρ∂∂ ρ ρ ρ2 ∂∂ ϕ 2z 2
ρ d dR
ρ = α 2
R dρ d ρ
→
2Φ
−1 d = α 2
Φ dϕ 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (4)
V= V(,)ρθ = R ()() ρ Θ θ
∂∂ ∂∂ ∂ 2
12 V 1 V 1 V
r + sinθ + = 0
rrrr2∂∂ 2sinθ ∂∂ θ θ r 222 sin θ ∂ ϕ
ρ∂2R2 ρ ∂ R 1 ∂ 2 Θ 1 ∂Θ
→ +++ = 0
R2∂ρ 2 R ∂ ρ Θ∂ θ 2 Θ∂tg θθ
ρ∂2 R2 ρ ∂ R
+ =n( n + 1)
R2∂ρ 2 R ∂ ρ
→
1∂2 Θ 1 ∂Θ
+ =−+n( n 1)
Θ∂θ2 Θtg θ ∂ θ
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (5)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
ρ d dR
ρ = α 2
R dρ d ρ
V= V(,)ρϕ = R ()() ρ Φ ϕ →
2Φ
−1 d = α 2
Φ dϕ 2
Φ=ϕ ϕ + ϕ =± α
Assume ( )∑Ap cos p ∑ B p sin pp ,
V()ϕ=− V ();() ϕ V ϕ =− V ( π − ϕ )
→Φ=ϕ ϕ α =
()A1 cos, 1
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (6)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
2Φ
−1 d = α 2 →Φ=ϕ ϕ α =
()A1 cos, 1
Φ dϕ 2
ρ d dR
ρ= α 2 ρ 2 ρ k
d dR k B 2
R dρ d ρ →ρ =k = α → = ±
ρ ρ ρ k k 1
k Rd d B
Assume R(ρ ) = B ρ k
k α =1
→ρ =+ ρ + − ρ − 1
R( ) B1 B 1
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (7)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
1 d 2Φ
− =α2 →Φ( ϕ ) = A cos ϕ
Φ dϕ 2 1
ρ
dρ dR =→ α2 ρ =+ ρρ + − − 1
R( ) B1 B 1
R dρ d ρ
V= V(,)ρϕ = R ()() ρ Φ ϕ
→ =+ρ ϕ + − ρ − 1 ϕ =+ρ ϕ + − ρ − 1 ϕ
VAB11cos AB 11 cos CCcos cos
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (8)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
=+ρ ϕ + − ρ − 1 ϕ y
Exterior: VCC1 1cos 1 cos E0
=+ρ ϕ + − ρ − 1 ϕ
Interior: VCC2 2cos 2 cos
ε1
V= E x ρ
−∞0 x →−∞
→+ = − ε
= = − + C1 E 0 2 θ
VV−∞1θ = π ρ →−∞ Cx 1
, x→−∞ x
C −
V= V =2 → ∞
gèc täa ®é 2 ρ→0 ρ →C − = 0
ρ→0 2
EFI is finite at the origin
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (9)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
=+ρ ϕ + − ρ − 1 ϕ y
Exterior: VCC1 1cos 1 cos E0
Interior: VCC=+ρcos ϕ + − ρ − 1 cos ϕ
2 2 2 ε
+= − − = 1 ρ
CEC1 0, 2 0
ε
2 θ
− −
VEC= −ρcos ϕ + ρ1 cos ϕ x
→ 1 0 1
= + ρ ϕ
VC2 2 cos
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (10)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
= −ρ ϕ + − ρ − 1 ϕ y
VEC1 0cos 1 cos E0
= + ρ ϕ
VC2 2 cos
ε1
V= V ρ
1ρ=a 2 ρ = a
ε2
→−+(EaCa− −1 )cosϕ = Ca + cos ϕ θ
0 1 2 x
∂ ∂ a
εV1= ε V 2
1∂ρ 2 ∂ ρ
ρ=a ρ = a
→−−ε− −2 ϕ = ε + ϕ
101(ECa )cos 22 Ca cos
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (11)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
= −ρϕ + − ρ − 1 ϕ
V1 E 0cos C 1 cos
= + ρ ϕ
V2 C 2 cos
− −1 +
(−EaCa + )cosϕ = Ca cos ϕ −ε− ε + 2 ε
0 1 2 →=−C E1 2 aC2 , =− E 1
ε− −− −2 ϕε = + ϕ 10εε+ 20 εε +
101(ECa )cos 22 Ca cos 12 12
ε− ε 2
=−−1 2 a ρ ϕ ρ ≥
V1 E 0 1 cos , as a
ε+ ε ρ 2
→ 1 2
2ε
V= − E1 ρcos ϕas ρ ≤ a
2 0 ε+ ε
1 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Product Solution of Laplace’s Equation (12)
Ex.
Solve for the potential & EFI in the vicinity of a conducting cylinder (posses an
infinite length) in a uniform EFI E0. The permittivities of the enviroment & the
cylinder are ε1 & ε2 respectively. EFI is perpendicular to the cylinder’s axis.
ε− ε a2
V=−− E11 2 ρ cos ϕ , as ρ ≥ a
1 0 ε+ ε ρ 2
1 2
2ε
V= − E1 ρcos ϕas ρ ≤ a
2 0 ε+ ε
1 2
∂−εε2 ∂− εε 2
V1 1 2 a V 1 1 2 a
EEρ =−=−1 cos,ϕ EEϕ =−=−− 1 sin ϕ
1∂+ρ 0 εερ2 1 ∂+ ϕ 0 εερ 2
1 2 1 2
∂V2ε ∂ V 2 ε
EE=−=21cosϕ , E =−=− 21 E sin ϕ
20ρ ∂+ρεε 2ϕ ∂+ ϕεε 0
1 2 1 2 2ε
→E = E = E 1
2 2z 0 ε+ ε
1 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Poisson’s & Laplace’s Equations
1. Poisson’s Equation
2. Laplace’s Equation
3. Uniqueness Theorem
4. Examples of the Solution of Laplace’s Equation
5. Examples of the Solution of Poisson’s Equation
6. Product Solution of Laplace’s Equation
7. The Iteration Method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (1)
• To solve for Laplace’s equation as V = V(x, y)
• A numeric method
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
y
The Iteration Method (2) x
∂2V ∂ 2 V ∂ 2 V
∇=2V + + = 0
∂2 ∂ 2 ∂ 2
x y z V2
=
V Vxy( , ) b
V V0 V
∂2V ∂ 2 V 3 1
→ + = 0 c a
∂x2 ∂ y 2 h d
∂V V− V
≈ 1 0
∂ V4
xa h h
∂ −
V V0 V 3
≈ ∂2V V− V − V + V
∂x h → ≈ 1 0 0 3
c 2 2
∂ ∂ ∂x h
V− V
∂2V ∂x ∂ x
≈ a c
∂ 2
x h Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
y
The Iteration Method (3) x
∂2V ∂ 2 V
+ = 0
∂x2 ∂ y 2 V2
∂2V V− V − V + V
≈ 1 0 0 3 V3 V0 V1
∂x2 h 2
h
∂2 V− V − V + V
V ≈ 2 0 0 4
∂ 2 2 V
y h h 4
∂2V ∂ 2 V VV+ + VV + − 4 V
→+≈123 4 0 = 0
∂x2 ∂ y 2 h
1
→ V≈() VVVV +++
04 1234
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (4)
Ex. 1
1 Air gapV = 100 Air gap
V=() VVVV +++
04 1234
1 43.8 53.2 43.8
()0+ 100 ++ 0 0 = 25
4
1 18.8 25 18.8
()100+ 50 ++ 0 25 = 43.8 V = 0 V = 0
4
6.2 9.4 6.2
1
()0+ 25 ++ 0 0 = 6.2
4
1
()43.8+ 100 + 43.8 + 25 = 53.2 V = 0
4
1 1 Step 1
()25+ 43.8 ++ 0 6.2 = 18.8 ()6.2+ 25 + 6.2 + 0 = 9.4
4 4
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (5)
Ex. 1
1 Air gapV = 100 Air gap
V=() VVVV +++
04 1234
4352.8 43
1 43.8 53.2 43.8
()100+ 50 ++ 0 25 = 43,8
4
18.6 18.6
1 18.8 25 18.8
()53.2+ 100 ++ 0 18.8 = 43 V = 0 V = 0
4
6.2 9.4 6.2
1
()43.8+ 100 + 43.8 + 25 = 53.2
4
1
()43+ 100 ++ 43 25 = 52.8 V = 0
4
1 1 Step 2
()25+ 43.8 ++ 0 6.2 = 18.8 ()25+ 43 ++ 0 6.2 = 18.6
4 4
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (6)
Ex. 1
1 Air gapV = 100 Air gap
V=() VVVV +++
04 1234
4352.8 43
1 43.8 53.2 43.8
()0+ 100 ++ 0 0 = 25
4
18.624.9 18.6
1 18.8 25 18.8
()18.6+ 52.8 + 18.6 + 9.4 = 24.9 V = 0 V = 0
4 7.09.8 7.0
6.2 9.4 6.2
1
()0+ 25 ++ 0 0 = 6.2
4
1
()9.4+ 18.6 ++ 0 0 = 7.0 V = 0
4
1 1 Step 2
()6.2+ 25 + 6.2 + 0 = 9.4 ()7.0+ 25 + 7.0 + 0 = 9.8
4 4
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (7)
Ex. 1
Air gapV = 100 Air gap
=1 () +++
V0 VVVV 1234
4 42.9 52.7 42.9
4352.8 43
1 43.8 53.2 43.8
()52.8+ 100 ++ 0 18.6 = 42.9
4 18.7 25.0 18.7
18.624.9 18.6
18.8 25 18.8
1 V = 0 V = 0
()42.9++ 100 42.9 + 24.9 = 52.7 7.1 9.8 7.1
4 7.09.8 7.0
6.2 9.4 6.2
1
()24.9+ 42.9 ++ 0 7.0 = 18.7
4
1
()18.7+ 52.7 + 18.7 + 9.8 = 25.0 V = 0
4
1 1 Step 3
()9.8+ 18.7 ++ 0 0 = 7.1 ()7.1+ 25 + 7.1 + 0 = 9.8
4 4
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (8) 10 V
Ex. 2
1 2
(0)= (0) == (0) = 3
V1 V 2... V 10 0
0 V
4 5 6
(1)=1 (0) +++ (0) =
V1() V 210 0 V 4 2.5000V 20 V
4 7 8
(1)1 (0) (1) (0) 0 V
V=() V +++10 VV = 3.1250V 9 10
24 3 15
... 0 V
1
V(1)=() VV (0) +++ (1)0 V (0) = 0.2344V 0 V
74 85 9
...
1
V(1)=()20 + V (1) + V (1) += 0 6.7358V
104 8 9
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
The Iteration Method (9) 10 V
Ex. 2
k 0 1 24
23 1 2 3
V (k ) (V) 0 2.5000 5.6429 5.6429
1 0 V
4 5 6
V (k ) (V) 0 3.1250 9.1735 9.1735
2 20 V
(k ) 7 8
V3 (V) 0 8.2813 13.1111 13.1111
(k ) 0 V
V4 (V) 0 0.6250 3.3957 3.3957 9 10
(k ) 0 V
V5 (V) 0 0.9375 7.9405 7.9405
(k )
V6 (V) 0 7.3047 13.2710 13.2710 0 V
(k )
V7 (V) 0 0.2344 5.9219 5.9219
(k )
V8 (V) 0 6.8848 13.0324 13.0324
(k ) 0 0.0586 3.7147 3.7147
V9 (V)
(k ) 0 6.7358 8.9368 8.9368
V10 (V)
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_viii_poissons.pdf