Bài giảng Electric circuit theory - Chapter XIII: Frequency Response - Nguyễn Công Phương
Frequency Response 1. Transfer Function 2. The Decibel Scale 3. Bode Plots 4. Series Resonance 5. Parallel Resonance 6. Passive Filters 7. Active Filters 8. Scaling
Bạn đang xem trước 20 trang tài liệu Bài giảng Electric circuit theory - Chapter XIII: Frequency Response - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Electric Circuit Theory
Frequency Response
Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoidal Steady State Analysis
X. AC Power Analysis
XI. Three-phase Circuits
XII. Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV. Two-port Networks
Frequency Response - sites.google.com/site/ncpdhbkhn 2
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 3
Transfer Function (1)
ω ω
Iin ( ) Iout ( )
+
+
ω ω ω
Vin ( ) H( ) Vout ( )
–
–
Out (ω )
H(ω ) =
In (ω )
V (ω ) I (ω )
H (ω ) = out H (ω ) = out
voltage ω current ω
Vin ( ) Iin ( )
V (ω ) I (ω )
H (ω ) = out H (ω ) = out
impedance ω admittance ω
Iin ( ) Vin ( )
Frequency Response - sites.google.com/site/ncpdhbkhn 4
Transfer Function (2)
ω ω
Iin ( ) Iout ( )
+
+
ω ω ω
Vin ( ) H( ) Vout ( )
–
–
Out (ω )
H(ω ) =
In (ω )
ω = →
Out ( ) 0z1 , z 2 ,... (zeros)
ω = →
In ( ) 0p1 , p 2 ,... (poles)
Frequency Response - sites.google.com/site/ncpdhbkhn 5
Transfer Function (3)
Ex. 1 5Ω
ω – + +
vs = 100sin t (V). Find the transfer function
Vo/Vs and sketch its frequency response. v( t )
s 2 H vo
V –
V = j2ω s
o 5+ j 2 ω
V j2ω
→H (ω ) =o =
v + ω
Vs 5j 2
j2ωω (5− j 2 ) 4 ω2 10 ω
= =+=j H φ
(5+−j 2ωω )(5 j 2 ) 25 + 4 ω2 25 + 4 ω 2 v v
5
– + +
4 2
16ω+ 100 ω − 5 V
=φ = 1 s j2ω Vo
Hv2 ; v tan
425ω+ 2 ω –
Frequency Response - sites.google.com/site/ncpdhbkhn 6
Transfer Function (4)
Ex. 1 5Ω
ω – + +
vs = 100sin t (V). Find the transfer function
Vo/Vs and sketch its frequency response. v( t )
s 2 H vo
4 2 –
16ω+ 100 ω − 5
H =;φ = tan 1
v425ω2 + v 2 ω
90
1
80
ω 70
0.8 Hv ( )
60
0.6 50
φ ω
40 v ( )
0.4 30
20
0.2 ω
ω 10
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Frequency Response - sites.google.com/site/ncpdhbkhn 7
i i
Ex. 2 Transfer Function (5) i o
ω – + +
vs = 100sin t (V). Find the transfer functions 5Ω
V /V , I /I , V /I , & I /V . v( t )
o s o i o i o s s 2 H vo
1mF –
Frequency Response - sites.google.com/site/ncpdhbkhn 8
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 9
The Decibel Scale
P
= 2
G log 10
P1
P
= 2
GdB 10log 10
P1
V
= 2
GdB 20log 10
V1
I
= 2
GdB 20log 10
I1
Frequency Response - sites.google.com/site/ncpdhbkhn 10
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 11
Bode Plots (1)
Semilog plots of the magnitude (in decibels) and phase (in degrees)
of a transfer function versus frequency
20log H
H = H φ → 10
φ
= = φ φ φ
HHHH123... ( H 1 1)(H 2 2)(H 3 3 )...
= () φ+ φ + φ +
HHH1 2 3 ... 1 2 3 ...
20logHHHH= 20log + 20log + 20log + ...
→ 10 10 1 10 2 10 3
φ= φ + φ + φ +
1 2 3 ...
Frequency Response - sites.google.com/site/ncpdhbkhn 12
Bode Plots (2)
2
±1 jω j2 ζω j ω
K()1 j ω + 1 +1 + ...
z ω ω
1 k k
H(ω ) =
2
jω j2 ζω j ω
1+ 1 +2 + ...
p ω ω
1 n n
K : gain
1 1 1
: poleat theorigin : simple pole 2 : quadratic pole
jω jω j2ζ ω j ω
1 + 1+2 +
p ω ω
1 n n
2
jω j2ζ ω j ω
jω : zeroat the origin 1+ : simplezero 1+1 + :quadraticzero
z ω ω
1 k k
Frequency Response - sites.google.com/site/ncpdhbkhn 13
Bode Plots (3)
H= 20log K
H(ω ) =K → dB 10
φ = 0
H φ
20log K
10 0
0.1 1 10 100 ω 0.1 1 10 100 ω
Frequency Response - sites.google.com/site/ncpdhbkhn 14
Bode Plots (4)
= − ω
1 HdB 20log 10
H(ω ) = →
jω φ = − 90 o
H
20 φ
0 0o
0.1 1 10 ω 0.1 1 10 ω
−20
−90 o
Frequency Response - sites.google.com/site/ncpdhbkhn 15
Bode Plots (5)
= ω
HdB 20log 10
H(ω ) =j ω →
φ = 90 o
φ
H 90 o
20
0 0o
0.1 1 10 ω 0.1 1 10 ω
−20
Frequency Response - sites.google.com/site/ncpdhbkhn 16
Bode Plots (6)
ω
= − + j
HdB 20log10 1
1 p1
H(ω ) = →
jω
+ − ω
1 φ =tan 1 −
p1
p1
H
5
0
-5
-10
-15
-20
ω
-25
0.1 p1 p1 10 p1
Frequency Response - sites.google.com/site/ncpdhbkhn 17
Bode Plots (7)
ω
= − + j
HdB 20log10 1
1 p1
H(ω ) = →
jω
+ − ω
1 φ =tan 1 −
p1
p1
φ
0.1 p1 p1 10 p1 100 p1
0 ω
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
Frequency Response - sites.google.com/site/ncpdhbkhn 18
Bode Plots (8)
ω
= + j
HdB 20log10 1
jω z1
H(ω )= 1 + →
z ω
1 φ = −1
tan
H z1
25
20
15
10
5
0
ω
-5
0.1 z1 z1 10 z1
Frequency Response - sites.google.com/site/ncpdhbkhn 19
Bode Plots (9)
ω
= + j
HdB 20log10 1
jω z1
H(ω )= 1 + →
z ω
1 φ = −1
tan
φ z1
100
90
80
70
60
50
40
30
20
10 ω
0
0.1 z1 z1 10 z1 100 z1
Frequency Response - sites.google.com/site/ncpdhbkhn 20
Bode Plots (10)
2
j2ζ ω j ω
H =−20log 1 +2 +
dB 10 ω ω
1 n n
H(ω ) = →
ζ ω ω 2
j2 2 j − j2ζ ω / ω
1+ + φ = − tan 1 2 n
ω ω − ω2 ω 2
n n 1 / n
20
ζ =
H 2 0.05
ζ =
10 2 0.2
ζ =
0 2 0.4
-10 ζ =
2 0.707
ζ = 1.5
-20 2
-30
ω
-40
ω ω ω ω
0.1 1 1 10 1 100 1
Frequency Response - sites.google.com/site/ncpdhbkhn 21
Bode Plots (11)
2
j2ζ ω j ω
H =−20log 1 +2 +
dB 10 ω ω
1 n n
H(ω ) = →
ζ ω ω 2
j2 2 j − j2ζ ω / ω
1+ + φ = − tan 1 2 n
ω ω − ω2 ω 2
n n 1 / n
ω ω ω ω
φ 0.1 1 1 10 1 100 1
0 ω
-20
ζ =
-40 2 1.5
-60
ζ =
-80 2 0.707
-100 ζ =
2 0.4
-120
ζ =
-140 2 0.2
-160 ζ =
2 0.05
-180
Frequency Response - sites.google.com/site/ncpdhbkhn 22
Bode Plots (12)
2
j2ζ ω j ω
H =20log 1 +2 +
2 dB 10 ω ω
j2ζ ω j ω n n
H(ω )= 1 +2 + →
ω ω
n n − j2ζ ω / ω
φ = tan 1 2 n
− ω2 ω 2
1 / n
40
H ζ =
30 2 1.5
ζ =
20 2 0.707
10 ζ =
2 0.4
0
-10
ζ = ζ =
2 0.05 2 0.2 ω
-20 ω ω ω ω
0.1 1 1 10 1 100 1
Frequency Response - sites.google.com/site/ncpdhbkhn 23
Bode Plots (13)
2
j2ζ ω j ω
H =20log 1 +2 +
2 dB 10 ω ω
j2ζ ω j ω n n
H(ω )= 1 +2 + →
ω ω
n n − j2ζ ω / ω
φ = tan 1 2 n
− ω2 ω 2
1 / n
180
ζ =
φ 2 0.05
160
ζ =
2 0.2
140
ζ =
2 0.4
120
100
80
ζ =
2 0.707
60
ζ =
2 1.5
40
20
ω
0
ω ω ω ω
0.1 1 1 10 1 100 1
Frequency Response - sites.google.com/site/ncpdhbkhn 24
Bode Plots (14)
1 N
N jω
K (jω ) N 1+
(jω ) z
20N dB/decade
20log 10 K 1 ω 20N dB/decade
−20N dB/decade
1 ω z ω
ω
90 N o 90 N o
ω
0o 0o
ω ω −90 N o z z 10 z ω
10
Frequency Response - sites.google.com/site/ncpdhbkhn 25
Bode Plots (15) 1
1 N
2 N 2
N ζ ω ω ζ ω ω
ω j2 1 j j2 2 j
+ j 1+ + 1+ +
1 ω ω ω ω
p n n k k
ω
k
p 40N dB/decade
ω
ω
−20N dB/decade −40N dB/decade
ω
n ω
o
180 N ω
k
ω ω
p 10 k 10 k
10 p 10 p
0o ω
o ω
0 0o
ω ω 10 ω ω − o
− o n n n 180 N
90 N 10
Frequency Response - sites.google.com/site/ncpdhbkhn 26
Ex. 1 Bode Plots (16)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
10 jω 10 jω − −
H(ω ) = = 90o− tan 1 (ω /5) − tan 1 ( ω /10)
(1+jω /5)(1 + j ω /10) 1 ++ jj ωω /5 1 /10
1 1
H=+20log 10 20log j ω + 20log + 20log
dB 10 10 101+jω /5 10 1 + j ω /10
→
o− 11 − 1 1
φ =90 + tan + tan
ω/5 ω /10
Frequency Response - sites.google.com/site/ncpdhbkhn 27
Ex. 1 Bode Plots (17)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
1 1
H=+20log 10 20log j ω + 20log + 20log
dB 10 10 101+jω /5 10 1 + j ω /10
40
H
30 20log10 10
K
20
10
20log 10 K ω
0
ω -10
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 28
Ex. 1 Bode Plots (18)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
1 1
H=+20log 10 20log j ω + 20log + 20log
dB 10 10 101+jω /5 10 1 + j ω /10
40
H
30 20log10 10
(jω ) N
20
10
20log jω
20N dB/decade 10 ω
0
1
ω -10
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 29
Ex. 1 Bode Plots (19)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
1 1
H=+20log 10 20log j ω + 20log + 20log
dB 10 10 101+jω /5 10 1 + j ω /10
40
H
30 20log10 10
1
N 20
jω
1+
p 10
ω
20log 10 j ω
p 0
ω 1
-10 20log
−20N dB/decade 10 1+ jω / 5
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 30
Ex. 1 Bode Plots (20)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
1 1
H=+20log 10 20log j ω + 20log + 20log
dB 10 10 101+jω /5 10 1 + j ω /10
40
H
30 20log10 10
1
N 20
jω
1+
p 10
ω
20log 10 j ω
p 0
1
1
ω 20log 10
-10 20log 10 1+ jω /10
−20N dB/decade 1+ jω / 5
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 31
Ex. 1 Bode Plots (21)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
1 1
H=+20log 10 20log j ω + 20log + 20log
dB 10 10 101+jω /5 10 1 + j ω /10
40
H Slope = 0 + 20 – 20
30 20log10 10
20
10
ω
20log 10 j
0 ω
1
1 20log
-10 20log 10 1+ jω /10
10 1+ jω / 5
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 32
Ex. 1 Bode Plots (22)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
o− 11 − 1 1
φ =90 + tan + tan
ω/5 ω /10
φ
90 o
(jω ) N 90
60
40
20 ω
0
-20
90 N o
-40
-60
ω -90
0.1 0.5 1 5 10 20 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 33
Ex. 1 Bode Plots (23)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
o− 11 − 1 1
φ =90 + tan + tan
ω/5 ω /10
φ
90 o
1 90
N
jω
1+ 60
p 40
20 ω
0
p -20
p
10 10 p − 1
-40 tan 1
ω
0o ω -60 / 5
-90
−90 N o
0.1 0.5 1 5 10 20 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 34
Ex. 1 Bode Plots (24)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
o− 11 − 1 1
φ =90 + tan + tan
ω/5 ω /10
φ
90 o
1 90
N
jω
1+ 60
p 40
20 ω
0
p -20
p −1 1
10 10 p − 1 tan
-40 tan 1 ω /10
ω
0o ω -60 / 5
-90
−90 N o
0.1 0.5 1 5 10 20 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 35
Ex. 1 Bode Plots (25)
500 jω 10 jω
Construct the Bode plots for H(ω ) = =
(jω+ 5)( j ω + 10) (1+jω /5)(1 + j ω /10)
o− 11 − 1 1
φ =90 + tan + tan
ω/5 ω /10
φ
90 o
90
60
40
20
0 ω
-20 −1 1
− 1 tan
-40 tan 1 ω /10
-60 ω / 5
-90
0.1 0.5 1 5 10 20 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 36
Ex. 2 Bode Plots (26)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
40
H
20 20log10 8
ω
0
K -20
-40
20log 10 K
-60
ω -80
-100
0.1 1 5 10 20 50 100
Frequency Response - sites.google.com/site/ncpdhbkhn 37
Ex. 2 Bode Plots (27)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
40
jω
H 20log 1 +
10 20
20 20log10 8
ω
0
N
jω -20
1+
z
-40
20N dB/decade -60
z ω -80
-100
0.1 1 5 10 20 50 100
Frequency Response - sites.google.com/site/ncpdhbkhn 38
Ex. 2 Bode Plots (28)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
40
jω
H 20log 1 +
10 20
20 20log10 8
ω
0
1
20log 10
1 -20 jω
(jω ) N
-40
-60
1 ω
−20N dB/decade -80
-100
0.1 1 5 10 20 50 100
Frequency Response - sites.google.com/site/ncpdhbkhn 39
Ex. 2 Bode Plots (29)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
40
ω
H 1 + j
20log 20log10 1
10 (1+ jω / 5) 2 20
20 20log10 8
ω
0
1
20log
1 10
-20 jω
N
jω
1+
p -40
p
-60
ω
−20N dB/decade -80
-100
0.1 1 5 10 20 50 100
Frequency Response - sites.google.com/site/ncpdhbkhn 40
Ex. 2 Bode Plots (30)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
40
ω
H 1 + j
20log 20log10 1
10 (1+ jω / 5) 2 20
20 20log10 8
ω
0
1 1
N 20log
2 10 ω
j2ζ ω j ω -20 j
1+2 +
ω ω
k k
-40
ω
k
ω
-60
−40N dB/decade
-80
1
20log
10 1+jω 4/10 + ( j ω /10) 2
-100
0.1 1 5 10 20 50 100
Frequency Response - sites.google.com/site/ncpdhbkhn 41
Ex. 2 Bode Plots (31)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
40
H
20
ω
0
-20
-40
-60
-80
-100
0.1 1 5 10 20 50 100
Frequency Response - sites.google.com/site/ncpdhbkhn 42
Ex. 2 Bode Plots (32)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
φ 90
50
ω
0
N
jω -50
1+
z -90
o
90 N -180
-200
0o
z z 10 z ω -270
10 -300
-360
0.1 0.2 0.5 1 2 10 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 43
Ex. 2 Bode Plots (33)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
φ 90
50
ω
0
1 -50
N
(jω ) -90
-180
-200
ω
-270
−90 No
-300
-360
0.1 0.2 0.5 1 2 10 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 44
Ex. 2 Bode Plots (34)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
φ 90
50
ω
0
1 -50
N
jω
1+ -90
p
p -180
p
10 10 p -200
0o ω
-270
o
−90 N -300
-360
0.1 0.2 0.5 1 2 10 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 45
Ex. 2 Bode Plots (35)
1000(jω + 20) 8(1+ jω / 20)
Construct the Bode plots for H(ω ) = =
ωω+2 ω 2 + ω + ωω+2 + ω + ω 2
jj( 5) ( j ) 40 j 100 jj(1 /5) 1 j 4/10 ( j /10)
φ 90
50
ω
0
1 -50
2 N
j2ζ ω j ω -90
1+2 +
ω ω
k k
ω
k
ω ω -180
10 k 10 k
-200
0o ω
-270
−180 N o
-300
-360
0.1 0.2 0.5 1 2 10 50 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 46
Ex. 3 Bode Plots (36)
Find the transfer function from the Bode plot?
40
(jω ) N H Slope = 0
30
20
20N dB/decade
10
jω
1 ω
0 ω
-10
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 47
Ex. 3 Bode Plots (37)
Find the transfer function from the Bode plot?
40
Slope = 0
K H
30 20log10 10
20
20log 10 K
10
jω
ω
0 ω
-10
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 48
Ex. 3 Bode Plots (38)
Find the transfer function from the Bode plot?
40
1 Slope = 0
N H
jω
1+ 30 20log10 10
p
20
p
ω 10
ω
−20N dB/decade j
0 ω
1
-10 20log
10 1+ jω / 5
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 49
Ex. 3 Bode Plots (39)
10 jω
Find the transfer function from the Bode plot? H(ω ) =
(1+jω / 5)(1 + j ω /10)
40
1 Slope = 0
N H
jω
1+ 30 20log10 10
p
20
p
ω 10 1
ω 20log 10
−20N dB/decade j 1+ jω /10
0 ω
1
-10 20log
10 1+ jω / 5
-20
0.1 1 5 10 20 100 200 500
Frequency Response - sites.google.com/site/ncpdhbkhn 50
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 51
Series Resonance (1)
1
E = E θ R jω L
m jω C
– +
I
1 1
Z=+RjLω + =+ RjL ω − = H ( ω )
jω C ω C
1
Resonance : Im(Z )=→ 0ωL − = 0
ωC
ω =1 = 1
Resonant frequency :0 rad/s;f 0 Hz
LC2π LC
Frequency Response - sites.google.com/site/ncpdhbkhn 52
Series Resonance (2)
E
I = m
R2 +()ω L − 1/ ω C 2
ω=1 = ω ω
0 1 2 Em
LC
R I
2
ω =−R + R + 1 E
1 0.707 m
2L 2 L LC R
B
R R 2 1
ω = + +
2 2L 2 L LC
R
B =ω − ω =
2 1 L
ω 0
0 ω ω ω ω
Q = 1 0 2
B
Frequency Response - sites.google.com/site/ncpdhbkhn 53
Ex. Series Resonance (3)
ω ω ω 10sin ωt V 20 Ω 6H 0.02F
Find 0, 1, 2, B, Q?
– +
ω =1 = 1 =
0 2.89 rad/s
LC 6× 0.02 i
R R 21 20 20 2 1
ω =−+ +=−+ + = 1.67 rad/s
1 2L 2 L LC 26× 26 × 60.02 ×
R R 21 20 20 2 1
ω =+ +=+ + = 5.00 rad/s
2 2L 2 L LC 26× 26 × 60.02 ×
=−=ω ω − =
B 2 1 5.00 1.67 3.33 rad/s
ω 2.89
Q =0 = = 0.87
B 3.33
Frequency Response - sites.google.com/site/ncpdhbkhn 54
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 55
Parallel Resonance (1)
1
J = J θ
m + jω C
V R
– jω L
11 1 1
Y =+ +jCω =+ jC ω − = H ( ω )
RjLω R ω L
1
Resonance : Im(Y )=→ 0ωC − = 0
ωL
ω =1 = 1
Resonant frequency :0 rad/s;f 0 Hz
LC2π LC
Frequency Response - sites.google.com/site/ncpdhbkhn 56
Parallel Resonance (2)
J
V = m
R2 +()ω C − 1/ ω L 2
ω=1 = ω ω
0 1 2
LC Jm R
V
2
ω =−1 + 1 + 1
1
2RC 2 RC LC 0.707 Jm R
B
1 1 2 1
ω = + +
2 2RC 2 RC LC
1
B =ω − ω =
2 1 RC
ω 0
0 ω ω ω ω
Q = 1 0 2
B
Frequency Response - sites.google.com/site/ncpdhbkhn 57
Ex. Parallel Resonance (3)
Find the resonant frequency?
2Ω 4Ω
+
– 0.01H
ω 1mF
Em sin t
Frequency Response - sites.google.com/site/ncpdhbkhn 58
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 59
Passive Filters (1)
H H
1 1
ω ω ω
0 c ω 0 c
H(0)= 1; H ( ∞ ) = 0 H(0)= 0; H ( ∞ ) = 1
Lowpass Highpass
H Bandpass Bandstop H
1 1
ω ω ω ω ω ω
0 1 2 0 1 2
H(0)= 0; H ( ∞ ) = 0 H(0)= 1; H ( ∞ ) = 1
Frequency Response - sites.google.com/site/ncpdhbkhn 60
Passive Filters (2)
H H
1 1 H
1
ω ω
0 1 ω 0 2 ω
ω
H H 0 c ω
1 1
ω ω ω ω
0 2 0 1 H
H H 1
1 1
ω ω
0 c
ω ω ω ω ω ω
0 1 2 0 1 2
Frequency Response - sites.google.com/site/ncpdhbkhn 61
H
Passive Filters (3) 1
=1 × Vi
Vo ω
jCω R+1/ jC ω 0 c ω
ω
Vo 1/j C 1
→==H(ω ) = –
V R+1/ jω C 1 + j ω RC +
i R +
v( t )
i vo ( t )
Presonant =1 →ω = 1 C
H(c ) –
Paverage 2 2
ω=1 → ω = 1 – +
H()c H () c +
1+ jω RC + ω2 2 2 R
c 1 c R C V
i 1 Vo
jω C –
→ω = 1
c RC
Frequency Response - sites.google.com/site/ncpdhbkhn 62
H
Passive Filters (4) 1
ω ω
V 0 c
V = R i
o R+1/ jω C
– +
C +
v( t )
i v( t )
V R jω RC R o
→==H(ω ) o =
+ω + ω –
Vi R1/ j C 1 j RC
– +
1 +
1
ω = Vi
c jω C V
RC R o
–
Frequency Response - sites.google.com/site/ncpdhbkhn 63
H
Passive Filters (5) 1
ω ω ω
V 0 1 2
V = R i
o R+ jLω + 1/ jC ω
– +
C +
v( t )
V R i v( t )
→H(ω ) =o = R o
+ω + ω L
Vi R jL1/ jC –
= R
RjL+(ω − 1/ ω C ) – +
1 +
V
i jω C V
ω R o
j L –
Frequency Response - sites.google.com/site/ncpdhbkhn 64
H
Passive Filters (6) 1
ω ω ω
ω+ ω 0 1 2
= (jL 1/ jC ) Vi
Vo
R+ jLω + 1/ jC ω – +
R +
vi ( t ) C
V jLω+1/ jC ω vo ( t )
→H(ω ) =o =
+ω + ω L
Vi R jL1/ jC
ω− ω –
= j( L 1/ C )
+ω − ω
RjL( 1/ C ) – +
R +
Vi 1
jω C Vo
jω L
–
Frequency Response - sites.google.com/site/ncpdhbkhn 65
Ex. 1 Passive Filters (7)
What is the type of this filter? – + +
1k Ω
ω
= ω Vs →Vo =j L = ω vs ( t ) v
Vo j L H( ) 2 H o
+ ω + ω µ –
R j L Vs R j L 1 F
jω2 j ω 2/1000 j ω
→=H(ω ) = =
1000+jω 2 1 + j ω 2/1000 500(1 + j ω /500)
60
40
20
0
-20
-40
-60
1 5 10 20 50 100 200 500 1,000 10,000
Frequency Response - sites.google.com/site/ncpdhbkhn 66
Ex. 2 Passive Filters (8) + –
vo
What is the type of this filter? – +
1k Ω
v( t )
s 2 H
1µ F
Frequency Response - sites.google.com/site/ncpdhbkhn 67
Ex. 3 Passive Filters (9)
Find the cutoff frequency? – + +
1k Ω
ω
= ω Vs →Vo =j L = ω vs ( t ) v
Vo j L H( ) 2 H o
+ ω + ω µ –
R j L Vs R j L 1 F
jω2 (1000− j ωωω 2)2 j 42 2000 ω
→=H(ω ) = = + j
1000+ jω 2 100022+ 4ω 1000 22 + 4 ω 1000 22 + 4 ω
16ω4+ 4.10 6 ω 2
→H(ω ) =
4ω2+ 10 6
ω4+ 6 ω 2
ω=→1 16 4.10 =→= 1 ω
H()c c 500 rad/s
24ω2+ 10 6 2
Frequency Response - sites.google.com/site/ncpdhbkhn 68
Ex. 4 Passive Filters (10)
ω +
Find L if c = 400 rad/s? – +
1k Ω
v( t )
s C L vo
–
Frequency Response - sites.google.com/site/ncpdhbkhn 69
Ex. 5 Passive Filters (11)
The filter is to reject a 200-Hz sinusoid while – +
100 Ω +
passing other frequencies, its bandwith is 100 Hz. v( t )
i C
Find L and C?
vo ( t )
L
=π =× π = π
B2 f 2 100 200 rad/s –
R R 100
B=→== L = 0.1592 H
L B 200 π
ωππ= =× = π
02f 0 2 200 400 rad/s
1 1 1
ω =→==C = 3.9777µ F
0 ω2 π 2 ×
LC 0 L (400 ) 0.1592
Frequency Response - sites.google.com/site/ncpdhbkhn 70
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 71
R f
Active Filters (1)
V Z R
ω =o = − f i C f
H( ) +
– +
Vi Z i +
V
i Vo
= – –
ZiR i
Z
1 f
R
f ω Z
j Cf R f i
= = +
Z f – +
1 1+ jω R C +
R + f f V
f ω i Vo
j C f – –
R 1
→H(ω ) =−f × R R
+ ω 1 2
Ri1 jRC f f vi
ii
1 –
ω = + vo
c R2
Rf C f v= − v
o i io
R1
Frequency Response - sites.google.com/site/ncpdhbkhn 72
Active Filters (2)
V Z R f
H(ω ) =o = − f
Vi Z i Ri Ci
+
– +
+
1 V
Z =R + i Vo
i i ω – –
j C i
=
Z fR f
R jRCω
→H(ω ) =−f =− f i
1 1+ jω R C
R + i i
i ω
j C i
ω = 1
c
Ri C i
Frequency Response - sites.google.com/site/ncpdhbkhn 73
H
Active Filters (3) 1
Lowpass Highpass
vi Gain v
filter filter o
ω
0 2 ω
H
R R R
f 1
R C2
+ C R
– 1 Ri
+ –
+
+ –
v + ω ω
i v 0 1
– o
– H
R jω R C R
−f × 1 − f i − f 1
+ ω + ω
Ri1 jRC f f 1 j Ri C i Ri
V 1 jω RC R
H(ω ) ==−o −2 − f 0 ω ω ω
+ω + ω 1 ω 2
Vi 1jRC1 1 jRC 2 R i 0
R 1 jω RC 1 1
=−×f × 2 ω=; ω = ; ωωω =
+ω + ω 2 1 012
Ri 1 j RC1 1 j RC 2 RC1 RC 2
Frequency Response - sites.google.com/site/ncpdhbkhn 74
H
Lowpass Active Filters (4) 1
v filter
i Summing vo
amplifier
Highpass ω
0 1 ω
filter H
1
R
R
C1 ω ω
– R f 0 2
+
Ri H
1
– +
C2 +
R R R
+ i
– v
+ o
0 ω ω ω
vi 1 2
– –
V R 1 jω RC
H(ω ) ==−o f − − 2
+ω + ω
ViR i 1 jRC1 1 jRC 2
Frequency Response - sites.google.com/site/ncpdhbkhn 75
Frequency Response
1. Transfer Function
2. The Decibel Scale
3. Bode Plots
4. Series Resonance
5. Parallel Resonance
6. Passive Filters
7. Active Filters
8. Scaling
Frequency Response - sites.google.com/site/ncpdhbkhn 76
Scaling (1)
L K
L' = K L L' = L' = m L
ω= ω m ω= ω ω= ω
' ' K K f ' K f K f
→ C f → →
= = = =
R' Km R C ' R' R C R' K R C
K C ' = m C ' =
m
K f Km K f
R' = K R ω' = K ω R' = R ω' = K ω R' = K R
ω' = ω m f f m
→ C L → C K → C
= = = C ' = = m C ' =
L' Km L C ' L' L' L
Km K f K f K f Km K f
ω' = ω ω' = K ω R' = R ω' = K ω R' = K R
R' = K R f f m
C → m C → L C → K
= = = L' = = L' = m L
C ' L' Km L C ' C '
Km K f K f Km K f K f
Frequency Response - sites.google.com/site/ncpdhbkhn 77
Scaling (2)
Ex.
– + +
The cutoff frequency is 500 rad/s. Scale the circuit for 1k Ω
a cutoff frequency of 25 kHz using a 10-kΩ resistor? v( t )
s 2 H vo
–
ω'= 2 π ×× 25 103 = 5 π × 10 4 rad/s
4
ω π × +
=' = 5 10 = π – +
K f 100 10k Ω
ω 500 v( t )
s vo
R ' 10 –
K = = = 10 0.064 H
m R 1
ω= ω
' K f K 10
→=L'm L = 2 = 0.064 H
= π
R' Km R K f 100
Frequency Response - sites.google.com/site/ncpdhbkhn 78
Các file đính kèm theo tài liệu này:
bai_giang_electric_circuit_theory_chapter_xiii_frequency_res.pdf