Bài giảng Electric circuit theory - Chapter IV: Circuit Theorems - Nguyễn Công Phương
Norton Equivalent Subcircuits (6)
E = 16 V; J = 2 A; R1 = 4 Ω;
R
2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω;
find the Norton equivalent
subcircuit?
R
eq : the input or equivalent
resistance at the terminals
when the independent
sources are deactivate
52 trang |
Chia sẻ: linhmy2pp | Lượt xem: 226 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Electric circuit theory - Chapter IV: Circuit Theorems - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Electric Circuit Theory
Circuit Theorems
Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoidal Steady State Analysis
X. AC Power Analysis
XI. Three-phase Circuits
XII. Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV. Two-port Networks
Circuit Theorems - sites.google.com/site/ncpdhbkhn 2
Circuit Theorems
1. Source Transformation
2. Linearity and Superposition
3. Thévenin Equivalent Subcircuits
4. Norton Equivalent Subcircuits
5. Maximum Power Transfer
Circuit Theorems - sites.google.com/site/ncpdhbkhn 3
Source Transformation (1)
R
E
J =
+ R
E – J R
E= RJ
E v
E= Ri + v i = −
RR
Circuit Theorems - sites.google.com/site/ncpdhbkhn 4
Source Transformation (2)
Ex. 1
a
J = 2 A; R = 4 Ω; R = 6 Ω; find i ?
1 2 2 i2
J R1 R2
= =×=
E R1 J 4 2 8V
b
E 8
i = = = 0.8A
2 + +
RR1 2 4 6
a
E R
J = + 1
R – E R2
+ R i2
– J R
E b
E= RJ
Circuit Theorems - sites.google.com/site/ncpdhbkhn 5
Source Transformation (3)
Ex. 2 R1 aR3 b
Find the current i
3. i3
+ R
– 2
E1 R4 J
+
E2 –
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 6
Circuit Theorems
1. Source Transformation
2. Linearity and Superposition
3. Thévenin Equivalent Subcircuits
4. Norton Equivalent Subcircuits
5. Maximum Power Transfer
Circuit Theorems - sites.google.com/site/ncpdhbkhn 7
Linearity and Superposition (1)
E R E
– + 1 – +
i i
+
J R1 R2 – R2
R1J
RJ+ E RJ E
i =1 = 1 +
+ + +
RR12 RR 12 RR 12
=i + i
E=0 J = 0
E
– +
i i
E=0 J =0
J R1 R2 R1 R2
Circuit Theorems - sites.google.com/site/ncpdhbkhn 8
Linearity and Superposition (2)
= + ++
yax11 ax 22 ... axn n
= + + +
y1 y 2 ... y n
= ≠
yi y= , ki
xk 0
Circuit Theorems - sites.google.com/site/ncpdhbkhn 9
Linear and Superposition (3)
+
+ deactivated
– v = 0
–
i = 0
deactivated
Circuit Theorems - sites.google.com/site/ncpdhbkhn 10
Linear and Superposition (4)
R1 a R3 b
+ R2 J
– i2
+
R4
E1 E2 –
c
To deactivate E1?
R1 a R3 b
R2 J
i2
+
R4
E2 –
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 11
Linear and Superposition (5)
R1 a R3 b
+ R2 J
– i2
+
R4
E1 E2 –
c
To deactivate E2?
R1 a R3 b
+ R2 J
– i2
R4
E1
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 12
Linear and Superposition (6)
R1 a R3 b
+ R2 J
– i2
+
R4
E1 E2 –
c
To deactivate J?
R1 a R3 b
+ R2 J
– i2
+
R4
E1 E2 –
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 13
Ex. 1 Linear and Superposition (7)
R = 10 Ω, R = 20 Ω, E = 30V, J = 2A, find the current of R ? R1
1 2 2 +
–
1. Deactivate J, find i2|E 2. Deactivate E, find i2|J
E J R2
R1 R1
+ i i 3. Find i | + i |
2 E 2 J 2 E2 2 J
–
E R2 J R2
= +
i2 i 2 i 2
E R J 3 j
i = i = 1
2 E 2 E i = +
R+ R R+ R 2 J 1 0.67
1 2 1 2 R1
× +
30 10 2 – =
= = 1A = R 1.67 A
10+ 20 10+ 20 2
= 0.67A
R1 J
Circuit Theorems - sites.google.com/site/ncpdhbkhn 14
Ex. 2 Linear and Superposition (8)
R1 aR3 b
E1 = 16 V; E2 = 9 V;
J = 2 A; R1 = 4 Ω; R2 = 6 Ω;
i2
R3 = 2 Ω; R4 = 10 Ω;
find i2? + R
– 2
E1 R4 J
+
E2 –
c
1. Deactivate E2 & J, find i2|E1
2. Deactivate E1 & J, find i2|E2
3. Deactivate E1 & E2, find i2|J
4. Find i2 = i2|E1 + i2|E2 + i2|J
Circuit Theorems - sites.google.com/site/ncpdhbkhn 15
Ex. 2 Linear and Superposition (9)
R1 aR3 b
E1 = 16 V; E2 = 9 V;
J = 2 A; R1 = 4 Ω; R2 = 6 Ω;
i2
R3 = 2 Ω; R4 = 10 Ω;
find i2? + R
– 2
E1 R4 J
1. Deactivate E & J, find i | +
2 2 E1 –
E2
R (R + R ) 2(6 +10 )
R = 2 3 4 = = 4Ω
234 + + + + c
R2 R3 R4 6 2 10 R1 R3
= + = + = Ω
R1234 R1 R234 4 4 8
i2
E1 16
i = = = 2 A +
1 E1 R
R 8 – 2
1234 E1 R4
R i 4× 2
i =−234 1 E1 =− =− 1.33A
2 E1 i2
R2 6 E1
Circuit Theorems - sites.google.com/site/ncpdhbkhn 16
Ex. 2 Linear and Superposition (10)
R1 aR3 b
E1 = 16 V; E2 = 9 V;
J = 2 A; R1 = 4 Ω; R2 = 6 Ω;
i2
R3 = 2 Ω; R4 = 10 Ω;
find i2? + R
– 2
E1 R4 J
2. Deactivate E & J, find i | +
1 2 E2 –
E2
R (R + R ) (4 2 +10 )
R = 1 3 4 = = 3Ω R c R
134 + + + + 1 3
R1 R3 R4 4 2 10
i
= + = + = Ω 2
R2134 R2 R134 6 3 9
R2
E 9 i2|E2 R4
i =2 = = 1A
2 E2 +
R2134 9
E2 –
Circuit Theorems - sites.google.com/site/ncpdhbkhn 17
Ex. 2 Linear and Superposition (11)
R1 aR3 b
E1 = 16 V; E2 = 9 V;
J = 2 A; R1 = 4 Ω; R2 = 6 Ω;
i2
R3 = 2 Ω; R4 = 10 Ω;
find i2? + R
– 2
E1 R4 J
3. Deactivate E & E , find i | +
1 2 2 J –
E2
E= R J =10 ×= 2 20V
4 4 c
R1 R3
R R 4× 6
R =1 2 = =Ω2,4
12 R+ R 4 + 6
1 2 i2
E 20
i =4 = = 1.39 A R
3 J ++ ++ 2 R J
R12 R 3 R 4 2.4 2 10 4
R i 2.4× 1.39 i2|J
i =−12 3 J =− =− 0.56A
2 J R 6
2 Circuit Theorems - sites.google.com/site/ncpdhbkhn 18
Ex. 2 Linear and Superposition (12)
R1 aR3 b
E1 = 16 V; E2 = 9 V;
J = 2 A; R1 = 4 Ω; R2 = 6 Ω;
i2
R3 = 2 Ω; R4 = 10 Ω;
find i2? + R
– 2
E1 R4 J
4. Find i = i | + i | + i | +
2 2 E1 2 E2 2 J –
E2
c
i = − 1.33A
2 E1
i = 1A → i = –1.33 + 1 – 0.56 = – 0.89A
2 E 2 2
i = − 0.56A
2 J
Circuit Theorems - sites.google.com/site/ncpdhbkhn 19
Circuit Theorems
1. Source Transformation
2. Linearity and Superposition
3. Thévenin Equivalent Subcircuits
4. Norton Equivalent Subcircuits
5. Maximum Power Transfer
Circuit Theorems - sites.google.com/site/ncpdhbkhn 20
Thévenin Equivalent Subcircuits (1)
Req
+
Eeq –
Circuit Theorems - sites.google.com/site/ncpdhbkhn 21
Thévenin Equivalent Subcircuits (2)
i Req i
+ +
+
v – v
RL Eeq RL
– –
Eeq : the open-circuit voltage at the terminals
Req : the input or equivalent resistance at the terminals
when the independent sources are deactivated
Circuit Theorems - sites.google.com/site/ncpdhbkhn 22
Ex. 1 Thévenin Equivalent Subcircuits (3)
R = 10 Ω, R = 20 Ω, R = 30 Ω, E = 30V.
1 2 3 R
+ 1
Find the current of R3?
–
Eeq : the open-circuit voltage at the terminals
= = E R2 R3
+ E v R i
R eq R 2 2 2
+ 1 = E
– R
Eeq 2 +
R1 R 2
R –
E 2 = 20V
R
+ eq
R : the input or equivalent resistance at the terminals –
eq Eeq R
when the independent sources are deactivated 3
R ×
1 = R1 R 2
Req E
R+ R = eq = 20
1 2 i3
R2 R+ R 6.67+ 30
=6.67 Ω eq 3
= 0.55A
Circuit Theorems - sites.google.com/site/ncpdhbkhn 23
Ex. 2 Thévenin Equivalent Subcircuits (4)
R1 = 10 Ω, R2 = 20 Ω, E = 30V, J = 2A. Find the current of R2?
R1
+
Eeq : the open-circuit voltage at the terminals –
+ + =
Ri1 1 Etd E E J R2
R1
+ i1 = −
i1 J
– E
eq →E = E + RJ
J – td 1
E = 50V
R
+ eq
R : the input or equivalent resistance at the terminals –
eq Eeq R
when the independent sources are deactivated 2
R
1 = R =10 Ω
Req 1 E 50
i = eq =
2 + +
Req R 2 10 20
= 1.67 A
Circuit Theorems - sites.google.com/site/ncpdhbkhn 24
Thévenin Equivalent Subcircuits (5)
a b
Ex. 3
R R
+ 1 2
E = 16 V; J = 2 A; R1 = 4 Ω;
– R R
EJ 3 iL L
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find iL? c
Eeq : the open-circuit voltage
at the terminals b
R
+ eq
a b – R
Eeq iL L
+
R1 R2
+ c
– EJ R3 Eeq
c –
Circuit Theorems - sites.google.com/site/ncpdhbkhn 25
Thévenin Equivalent Subcircuits (6)
Ex. 3
= =
Eeq v3 Ri 3 3
E = 16 V; J = 2 A; R1 = 4 Ω;
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω; 1 1 E
+ v = + J
find iL? + a
RRR123 R 1
Eeq : the open-circuit voltage 1 1 16
at the terminals →+ v =+ 2
468+ a 4
→v = 18.67 V
a b a
i + va 18.67
R1 R2 3 →= = =
+ i 1.33 A
3 + +
– R R 6 8
EJ R3 Eeq 2 3
→E =×8 1.33 = 10.67 V
c – eq
Circuit Theorems - sites.google.com/site/ncpdhbkhn 26
Thévenin Equivalent Subcircuits (7)
a b
Ex. 3
R R
+ 1 2
E = 16 V; J = 2 A; R1 = 4 Ω;
– R R
EJ 3 iL L
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find iL? c
Req : the input or equivalent
resistance at the terminals b
when the independent
sources are deactivated R
+ eq
– E R
a b eq iL L
c
R1 R2
Req
R3
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 27
Thévenin Equivalent Subcircuits (8)
Ex. 3
= +
E = 16 V; J = 2 A; R1 = 4 Ω; Req ( RR1 2 )// R 3
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find i ?
L ( R+ R) R
= 1 2 3
Req : the input or equivalent R+ R + R
resistance at the terminals 1 2 3
when the independent
+
sources are deactivated = (4 6)8
a b 4+ 6 + 8
R1 R2
Req =4.44 Ω
R3
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 28
Thévenin Equivalent Subcircuits (9)
a b
Ex. 3
R R
+ 1 2
E = 16 V; J = 2 A; R1 = 4 Ω;
– R R
EJ 3 iL L
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find iL? c
=
Eeq 10.67 V b
R
= Ω 10.67 + eq
Req 4.44 → = =
i 1.13A –
L E i RL
E 4.44+ 5 eq L
i = eq c
L +
RReq L
Circuit Theorems - sites.google.com/site/ncpdhbkhn 29
Thévenin Equivalent Subcircuits (10)
a b
Ex. 4
R
R 2 i2
+ 1
E = 16 V; J = 2 A; R1 = 4 Ω;
– EJ R3 RL
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find i2? c
Req
a b
i
R1 2 a
R3 RL
R
+ eq
c – R
Eeq i2 2
= +
Req( RR3 // L ) R 1 b
R R 8× 5
=3 L + R = + = Ω
+ 1 4 7.08
R3 R L 8+ 5
Circuit Theorems - sites.google.com/site/ncpdhbkhn 30
Thévenin Equivalent Subcircuits (11)
a b
Ex. 4
R
R 2 i2
+ 1
E = 16 V; J = 2 A; R1 = 4 Ω;
– EJ R3 RL
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find i2? c
+ –
a Eeq b
R
+ 1
a
– EJ R3 RL
R
c + eq
– R
Eeq i2 2
= −
Eeq v a v b b
→E = v
= = eq a → =
vb v c 0 Eeq 24V
− + =→ = +×=
RJ1 va E v a 16 4 2 24V
Circuit Theorems - sites.google.com/site/ncpdhbkhn 31
Thévenin Equivalent Subcircuits (12)
a b
Ex. 4
R
R 2 i2
+ 1
E = 16 V; J = 2 A; R1 = 4 Ω;
– EJ R3 RL
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
find i2? c
=
Eeq 24 V
a
= Ω
Req 7.08 24 R
→ = = + eq
i2 1.84 A
+ – E R
E 7.08 6 eq i2 2
i = eq
2 + b
RReq 2
Circuit Theorems - sites.google.com/site/ncpdhbkhn 32
Ex. 5 Thévenin Equivalent Subcircuits (13)
R1 a R3 b
E1 = 16 V; E2 = 9 V; J = 2 A; R1 = 4 Ω;
R2 = 6 Ω; R3 = 2 Ω; R4 = 10 Ω; find i2?
+ R2 J
– i2
+
R4
E1 E2 –
c
R2 a R2 a R3 b
+
+
i2 Req i2 R1 J
–
–
+
+ R
– 4
E2 Eeq E2 E1 –
c c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 33
Ex. 5 Thévenin Equivalent Subcircuits (14)
R2 a R3 b
E1 = 16 V; E2 = 9 V; J = 2 A; R1 = 4 Ω;
R2 = 6 Ω; R3 = 2 Ω; R4 = 10 Ω; find i2?
+ R1 J
– i2
a R3 b +
R4
E2 E1 –
Req R1 c
R4
R2 a
c
+
i2 Req
= + –
Req ( RR3 4 ) // R 1 –
(R+ R ) R (2+ 10)4 E +
= 3 4 1 = =3 Ω 2 Eeq
+ + + +
(R3 R 4 ) R 1 (2 10) 4 c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 34
Ex. 5 Thévenin Equivalent Subcircuits (15)
R2 a R3 b
E1 = 16 V; E2 = 9 V; J = 2 A; R1 = 4 Ω;
R2 = 6 Ω; R3 = 2 Ω; R4 = 10 Ω; find i2?
+ R1 J
– i2
a R3 b + R
– 4
E2 E1 –
R1 J c
Eeq i1
+
R4
–
+ − =
E1 Ri1 1 Eeq E 1
R2 a
c → = −
Eeq Ri1 1 E 1
1 1 E +
+ =1 + i2 Req
v J –
b = − –
RRR+ RR + 17 V
134 13 +
E
E− v 2 Eeq
→v = 17.5V →=i 1 b =− 0.25A
b 1 + c
R1 R 3
Circuit Theorems - sites.google.com/site/ncpdhbkhn 35
Ex. 5 Thévenin Equivalent Subcircuits (16)
R2 a R3 b
E1 = 16 V; E2 = 9 V; J = 2 A; R1 = 4 Ω;
R2 = 6 Ω; R3 = 2 Ω; R4 = 10 Ω; find i2?
+ R1 J
– i2
+
R4
E2 E1 –
c
= −
Eeq 17 V
R =3 Ω 9− 17 R2 a
eq →=i =− 0.89 A
+ 2 3+ 6
EE2 eq +
= i2 Req
–
i –
2 +
RReq 2 +
E2 Eeq
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 36
Circuit Theorems
1. Source Transformation
2. Linearity and Superposition
3. Thévenin Equivalent Subcircuits
4. Norton Equivalent Subcircuits
5. Maximum Power Transfer
Circuit Theorems - sites.google.com/site/ncpdhbkhn 37
Norton Equivalent Subcircuits (1)
i i
+ +
v v
RL Jeq Req RL
– –
Jeq : the short-circuit through the terminals
Req : the input or equivalent resistance at the terminals
when the independent sources are deactivated
Circuit Theorems - sites.google.com/site/ncpdhbkhn 38
Ex. 1 Norton Equivalent Subcircuits (2)
R = 10 Ω, R = 20 Ω, R = 30 Ω, E = 30V.
1 2 3 R
+ 1
Find the current of R3?
–
Jeq : the short-circuit through the terminals
E R2 R3
R
+ 1 = = E = 30
– J iR2
eq R 10
R 1
E 2 = 3A
R R
Req : the input or equivalent resistance at the terminals eq 3
when the independent sources are deactivated Jeq
R R× R 1 1
1 R = 1 2 + v = J
eq + eq
R1 R 2 Req R 3
R → =
2 =6.67 Ω v 13.36V
→ =v =
i3 0.55A
Circuit Theorems - sites.google.com/site/ncpdhbkhn R3 39
Norton Equivalent Subcircuits (3)
Ex. 2
a b
E = 16 V; J = 2 A; R1 = 4 Ω;
R1 R2
R2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω; +
find the Norton equivalent – E J R3
subcircuit?
c
Jeq : the short-circuit through
the terminals
b
a b
Jeq Req
R1 R2
+
– EJ R3 Jeq c
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 40
Norton Equivalent Subcircuits (4)
Ex. 2
=
E = 16 V; J = 2 A; R1 = 4 Ω; Jeq i 2
R2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω;
find the Norton equivalent 1 1 E
+v = + J
subcircuit? a
R1 R 2 R 1
J : the short-circuit through
eq →+1 1 =+ 16
the terminals va 2
4 6 4
i2 → =
va 14.40 V
a b
R1 R2 va 14.40
+ →= = =
i2 2.40 A
– EJ R3 Jeq R2 6
→ =
c Jeq 2.40 A
Circuit Theorems - sites.google.com/site/ncpdhbkhn 41
Norton Equivalent Subcircuits (5)
Ex. 2
a b
E = 16 V; J = 2 A; R1 = 4 Ω;
R1 R2
R2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω; +
find the Norton equivalent – E J R3
subcircuit?
c
Req : the input or equivalent
resistance at the terminals
when the independent b
sources are deactivated
J R
a b eq eq
R1 R2
Req c
R3
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 42
Norton Equivalent Subcircuits (6)
Ex. 2
E = 16 V; J = 2 A; R = 4 Ω;
1 = +
R2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω; Req ( RR1 2 )// R 3
find the Norton equivalent
subcircuit?
( R+ R) R
= 1 2 3
Req : the input or equivalent R+ R + R
resistance at the terminals 1 2 3
when the independent
+
sources are deactivated = (4 6)8
+ +
a b 4 6 8
R1 R2
Req =4.44 Ω
R3
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 43
Norton Equivalent Subcircuits (7)
Ex. 2
a b
E = 16 V; J = 2 A; R1 = 4 Ω;
R1 R2
R2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω; +
find the Norton equivalent – E J R3
subcircuit?
c
b
=
Jeq 2.40 A
J R
= Ω eq eq
Req 4.44
c
Circuit Theorems - sites.google.com/site/ncpdhbkhn 44
Norton Equivalent Subcircuits (8)
Ex. 3
a b
E = 16 V; J = 2 A; R1 = 4 Ω; R
R 2 i2
+ 1
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
– EJ R3 RL
find i2?
c
Req
a b
i
R1 2
R3 RL a
i2
c
Jeq Req R2
R=( RR // ) + R
eq3 L 1 b
R R 8× 5
=3 L + R = + = Ω
+ 1 4 7.08
R3 R L 8+ 5
Circuit Theorems - sites.google.com/site/ncpdhbkhn 45
Norton Equivalent Subcircuits (9)
Ex. 3
a b
E = 16 V; J = 2 A; R1 = 4 Ω; R
R 2 i2
+ 1
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
– EJ R3 RL
find i2?
c
a b
R1
+ i1 Jeq
– EJ R RL
3 a
c i2
= + Jeq Req R2
Jeq i1 J
1++ 1 1 =+E → =
va J va 10.43V b
RRR R
1 3L 1 E− v
→i =a = 1.39 A → = +=
1 J eq 1.39 2 3.39A
R1
Circuit Theorems - sites.google.com/site/ncpdhbkhn 46
Norton Equivalent Subcircuits (10)
Ex. 3
a b
E = 16 V; J = 2 A; R1 = 4 Ω; R
R 2 i2
+ 1
R2 = 6 Ω; R3 = 8 Ω; RL = 5 Ω;
– EJ R3 RL
find i2?
c
=
J eq 3.39 A
R =7.08 Ω a
eq a
E= R J R i
eq eq eq + eq 2
– E R J R R
= 24V eq i2 2 eq eq 2
b
b
E 24
i =eq = = 1.84A
2 + +
Req R 2 7.08 6
Circuit Theorems - sites.google.com/site/ncpdhbkhn 47
Thévenin & Norton Equivalent Subcircuits (1)
i
+
v RL
–
Req i i
+ E = R J
+ eq eq eq +
– v R v
Eeq L Jeq Req RL
– E –
R = eq
eq J
eq v
→R = open-circuit
Eeq = vopen-circuit eq
ishort-circuit
Jeq = ishort-circuit
Circuit Theorems - sites.google.com/site/ncpdhbkhn 48
Thévenin & Norton Equivalent Subcircuits (2)
a
Ex. 1 b
R1 R2
E = 16 V; J = 2 A; R1 = 4 Ω; +
– E J R3
R2 = 6 Ω; R3 = 8 Ω; Rt = 5 Ω;
find R ?
eq c
v E
=open-circuit = eq
Req
ishort-circuit J eq 10.67
→R = =4.44 Ω
= eq 2.40
Eeq 10.67 V
=
Jeq 2.40 A
Circuit Theorems - sites.google.com/site/ncpdhbkhn 49
Circuit Theorems
1. Source Transformation
2. Linearity and Superposition
3. Thévenin Equivalent Subcircuits
4. Norton Equivalent Subcircuits
5. Maximum Power Transfer
Circuit Theorems - sites.google.com/site/ncpdhbkhn 50
Maximum Power Transfer (1)
Req
2 i
p= i R 2
L L L E +
→p = eq R +
Eeq L L – v
= + Eeq RL
iL Req R L
R+ R –
eq L dp
L = 0
dR L
dp (R+ R )2(2 − RR + R )
→L = E 2 eq L L eq L
eq + 4
dRL( RR eq L )
RRR+ −2 RR −
=E2eq L L = E 2 eq L = 0
eq+3 eq + 3
(RReq L ) ( RR eq L )
=
RL R eq
Circuit Theorems - sites.google.com/site/ncpdhbkhn 51
Maximum Power Transfer (2)
Ex. 1
E = 16 V; R1 = 4 Ω; R2 = 6 Ω; R3 = 2 Ω; R4 = 10 Ω;
R1 R2
Find the value of RL for maximum power transfer? E
+ – R
= L
RL R eq
R3 R4
R R R R
R =1 2 + 3 4
eq R+ R R + R
R1 R2 1 2 3 4
E Req i
Req =4.6 + 2.10
4+ 6 2 + 10 + +
– v
=4,07 Ω Eeq RL
R3 R4
–
→ = Ω
RL 4.07
Circuit Theorems - sites.google.com/site/ncpdhbkhn 52
Các file đính kèm theo tài liệu này:
- bai_giang_electric_circuit_theory_chapter_iv_circuit_theorem.pdf