Bài giảng Control system design - Chapter V: The Performance of Feedback Control Systems - Nguyễn Công Phương
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design
Software
56 trang |
Chia sẻ: linhmy2pp | Ngày: 19/03/2022 | Lượt xem: 199 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Control system design - Chapter V: The Performance of Feedback Control Systems - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
CONTROL SYSTEM DESIGN
The Performance
of Feedback Control Systems
Contents
I. Introduction
II. Mathematical Models of Systems
III. State Variable Models
IV. Feedback Control System Characteristics
V. The Performance of Feedback Control Systems
VI. The Stability of Linear Feedback Systems
VII. The Root Locus Method
VIII.Frequency Response Methods
IX. Stability in the Frequency Domain
X. The Design of Feedback Control Systems
XI. The Design of State Variable Feedback Systems
XII. Robust Control Systems
XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn 2
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 3
Introduction
Performance Performance
measure, M1 measure, M2
pmin
Parameter, p
sites.google.com/site/ncpdhbkhn 4
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 5
Test Input Signals (1)
• If the system is stable, the response to a specific input
signal will provide several measures of the performance.
• But because the actual input signal of a system is usually
unknown, a standard test input signal is normally chosen.
• Using a standard input allows the designer to compare
several competing designs.
• Many control systems experience input signals that are
very similar to the standard test signals.
• 4 types:
– Unit impulse,
– Step,
– Ramp,
– Parabolic.
sites.google.com/site/ncpdhbkhn 6
Test Input Signals (2)
r() t r() t
A
2 2
0 t 0 t
1
, t , 0 A, t 0 A
r( t ) 2 2 ; R ( s ) 1 r();() t R s
0,t 0 s
0, otherwise Unit impulse Step
Ramp Parabolic
r() t r() t
A
0 t 0 t
At, t 0 A At2, t 0 2A
r();() t R s 2 r();() t R s 3
0,t 0 s 0,t 0 s
sites.google.com/site/ncpdhbkhn 7
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 8
Performance of Second – Order
Systems (1)
R() s 2 Y() s
G() s n
G() s s( s 2n )
Y()() s R s ()
1 G ( s )
2
n
2 2 R() s
s2n s n
2
1 n
R()() s Y s 2 2
s s( s 2n s n )
1 nt 2 1
y( t ) 1 e sin(n 1 t cos )
1 2
1
1 ent sin( t )
n
sites.google.com/site/ncpdhbkhn 9
Performance of Second – Order
Systems (2)
R() s 2 Y() s
G() s n
s( s 2 )
() n
1nt2 1 1 n t
r( t ) 1 y ( t ) 1 e sin(n 1 t cos ) 1 e sin( n t )
1 2
1.8
y() t = 0.1
1.6 = 0.2
= 0.4
1.4 = 0.7
= 1.1
1.2 = 2.0
1
0.8
0.6
0.4
0.2
t
0
0 0.5 1 1.5 2 2.5 3
sites.google.com/site/ncpdhbkhn 10
Performance of Second – Order
Systems (3)
R() s 2 Y() s
G() s n
G() s s( s 2n )
Y()() s R s ()
1 G ( s )
2
n
2 2 R() s
s2n s n
2
n
R( s ) 1 Y ( s ) 2 2
s2n s n
n nt 2
y( t ) e sin(n 1 t )
1 2
1
1 ent sin( t )
n
sites.google.com/site/ncpdhbkhn 11
Performance of Second – Order
Systems (4)
R() s 2 Y() s
G() s n
s( s 2 )
() n
n nt2 1 n t
r( t ) ( t ) y ( t ) e sin( n 1 t ) 1 e sin( n t )
1 2
4
y() t = 0.10
= 0.25
3
= 0.50
= 1.1
2
1
0
-1
-2
t
-3
0 0.5 1 1.5 2 2.5 3
sites.google.com/site/ncpdhbkhn 12
Performance of Second – Order
Systems (5)
1 1
r( t ) 1 y ( t ) 1 ent sin( 1 2 t cos 1 ) 1 e n t sin( t )
y() t n n
1 2
1.6
M pt M final value
Percent overshoot pt 100%
1.4 final value
Overshoot
/ 1 2
1.2 100e
1.0
1
0.9 1.0
0.8
0.6
Peak time T
p 2
0.4 1
n 4
Rise time Tr Settling time Ts
0.2 n
Tr1
0.1 t
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
sites.google.com/site/ncpdhbkhn 13
Performance of Second – Order
Systems (5)
120
Percent overshoot
Peak time
100
80
60
40
20
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Damping ratio,
sites.google.com/site/ncpdhbkhn 14
Performance of Second – Order
Systems (6)
1.6
= 10rad/s
n
1.4 = 1rad/s
n
1.2
1
0.8
Amplitude
0.6
0.4
0.2
0
0 1 2 3 4 5 6 7 8 9 10
Time (s)
sites.google.com/site/ncpdhbkhn 15
Performance of Second – Order
Ex. Systems (7)
Find K & p so that the transient response to a step should be as R() s K Y() s
fast as attainable while retaining an overshoot of less than 5%, s() s p
and the settling time should be less than 4 seconds. ()
K
G() ss() s p K 2
T() s n
1 G ( s ) K 2 2 2
1 s ps K s 2n s n
s() s p
2
2 Percent overshoot100 e/ 1
s1,2 n j n 1
2
100e(1/ 2) / 1(1/ 2)
4
Ts 4 n 1 4.32%
n
n 1
s 1 j 1
1,2 2
n 1 1
p 2n 2(1/ 2) 2 2
1/ 2 2 2
K n ( 2) 2
n 2
sites.google.com/site/ncpdhbkhn 16
Performance of Second – Order
Ex. Systems (8)
Find K & p so that the transient response to a step should be as R() s K Y() s
fast as attainable while retaining an overshoot of less than 5%, s() s p
and the settling time should be less than 4 seconds. ()
K2; p 2
1.4
1.2
1
0.8
y(t)
0.6
0.4
0.2
0
0 1 2 3 4 5 6 7 8 9 10
Time (s)
sites.google.com/site/ncpdhbkhn 17
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 18
Effects of a Third Pole & a Zero on the
Second – Order System Response (1)
1
T() s
(s2 2 s 1)( s 1)
1.4
1.2
1
0.8
y(t)
0.6
0.4
= 2.25
= 1.5
= 0.9
0.2
= 0.4
= 0.05
= 0.001
0
0 2 4 6 8 10 12 14
Time (s)
sites.google.com/site/ncpdhbkhn 19
Effects of a Third Pole & a Zero on the
Second – Order System Response (2)
1
T() s
(s2 2 s 1)( s 1)
1
Percent Settling
overshoot time
2.25 0.444 0 9.63
1.50 0.666 3.9 6.30
0.90 1.111 12.3 8.81
0.40 2.50 18.6 8.67
0.05 20.0 20.5 8.37
0.45
sites.google.com/site/ncpdhbkhn 20
Effects of a Third Pole & a Zero on the
Second – Order System Response (3)
2
(n /a )( s a )
T() s 2 2
s2n s n
3.5
a/ = 5
n
a/ = 2
n
3 a/ = 1
n
a/ = 0.5
n
2.5
2
y(t)
1.5
1
0.5
0
0 1 2 3 4 5 6 7 8 9 10
Time (s)
sites.google.com/site/ncpdhbkhn 21
Effects of a Third Pole & a Zero on the
Second – Order System Response (4)
2
(n /a )( s a )
T() s 2 2
s2n s n
Percent Settling Peak
a /n overshoot time time
5 23.1 8.0 3.0
2 39.7 7.6 2.2
1 89.9 10.1 1.8
0.5 210.0 10.3 1.5
0.45
sites.google.com/site/ncpdhbkhn 22
Effects of a Third Pole & a Zero on the
Second Order System Response (5)
Ex. –
62.5(s 2.5) 10( s 2.5) 4
3
T1();() s2 T 2 s 2
(s 6 s 25)( s 6.25) s 6 s 25 2
1
2
0
-1
ImaginaryPart
-2
1.6 -3
T
1 -4
1.4 T -8 -6 -4 -2 0 2
2 Real Part
1.2
1
0.8
y(t)
0.6
0.4
0.2
0
0 0.5 1 1.5 2 2.5 3
Time (s)
sites.google.com/site/ncpdhbkhn 23
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 24
The s – Plane Root Location
& the Transient Response
1 MNMNA B s C
Y( s ) i k k y ( t ) 1 A eit D e k t sin( t )
2 2 2 i k k k
si1 s i k 1s2k s ( k k ) i 1 k 1
j
1 1 10
1
0 0 0 0
-1
-1 -1 -10
0 5 10 0 5 10 0 5 10 0 5 10
1 1 10
1
0 0 0 0
-1
-1 -1 -10
0 5 10 0 5 10 0 5 10 0 5 10
1 1 2 10
0.5 0.5 1 5
0 0 0 0
0 5 10 0 5 10 0 5 10 0 5 10
sites.google.com/site/ncpdhbkhn 25
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control
Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 26
The Steady – State Error
of Feedback Control Systems (1)
R() s Y() s
1 G() s G() s
E()() s R s c
1 Gc ( s ) G ( s ) () Controller Process
1
lime ( t ) esteady state lim s R ( s )
t s 0
1 Gc ( s ) G ( s )
A
r()() t A R s
s
1 AA
ess lim s
s0
1Gc ()() s G s s 1lim G c ()() s G s
s0
Kp lim G c ( s ) G ( s )
s0
A
ess
1 K p
sites.google.com/site/ncpdhbkhn 27
The Steady – State Error
of Feedback Control Systems (2)
R() s Y() s
1 G() s G() s
E()() s R s c
1 Gc ( s ) G ( s ) () Controller Process
1
lime ( t ) esteady state lim s R ( s )
t s 0
1 Gc ( s ) G ( s )
A
r()() t At R s
s2
1 AA
ess lim s lim
s02 s 0
1 Gc ( s ) G ( s )s sG c ( s ) G ( s )
Kv lim sG c ( s ) G ( s )
s0
A
ess
Kv
sites.google.com/site/ncpdhbkhn 28
The Steady – State Error
of Feedback Control Systems (3)
R() s Y() s
1 G() s G() s
E()() s R s c
1 Gc ( s ) G ( s ) () Controller Process
1
lime ( t ) esteady state lim s R ( s )
t s 0
1 Gc ( s ) G ( s )
At2 A
r()() t R s
2 s3
1 AA
ess lim s lim
s03 s 0 2
1 Gc ( s ) G ( s ) s s Gc ()() s G s
2
Ka lim s G c ( s ) G ( s )
s0
A
ess
Ka
sites.google.com/site/ncpdhbkhn 29
The Steady – State Error
of Feedback Control Systems (4)
R() s Y() s
1 G() s G() s
E()() s R s c
1 Gc ( s ) G ( s ) () Controller Process
2
Kplim GsGsK c ()(); v lim sGsGsK c ()(); a lim sGsGs c ()()
s0 s 0 s 0
Number of Input
Integrations
Step, r(t) = A Ramp Parabola
in Gc(s)G(s),
Type Number R()/ s A s At,/ A s2 At2/ 2, A / s 3
A
0 ess Infinite Infinite
1 K p
A
1 ess 0 Infinite
Kv
A
2 ess 0 0
Ka
sites.google.com/site/ncpdhbkhn 30
The Steady – State Error
Ex. 1 of Feedback Control Systems (5)
R() s
K2 K Y() s
Gc () s K1 G() s
() s s 1
A
R() s A ess
1 K p
KK2
Kplim G c ( s ) G ( s ) lim K1
s0 s 0 s s 1
ess 0
A
R() s At ess
Kv
KK2
Kplim sG c ( s ) G ( s ) lim s K1 KK2
s0 s 0 s s 1
A
ess
KK2
sites.google.com/site/ncpdhbkhn 31
The Steady – State Error
Ex. 1 of Feedback Control Systems (6)
R() s K K Y() s
R( s ) A e 0 G() s K 2 G() s
ss c 1 s s 1
A ()
R() s At ess
KK2
1
0.8
0.6 Step input
Output
0.4 Error
0.2
0
0 1 2 3 4 5 6 7 8
1
Ramp input
Output
0.5
Error
0
-0.5
-1
0 1 2 3 4 5 6 7 8
sites.google.com/site/ncpdhbkhn 32
The Steady – State Error
Ex. 1 of Feedback Control Systems (7)
R() s K K Y() s
R( s ) A e 0 G() s K 2 G() s
ss c 1 s s 1
A ()
R() s At ess
KK2
1
K = 0.2
2
K = 2
0.5 2
K = 10
2
0 K = 20
2
Error of Step -0.5
-1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4
K = 0.2
2
0.3
K = 2
2
K = 10
0.2 2
K = 20
0.1 2
Error of Ramp
0
-0.1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
sites.google.com/site/ncpdhbkhn 33
The Steady – State Error
of Feedback Control Systems (8)
R() s Y() s
K1 Gc () s G() s
() Controller Process
H() s
Sensor
K
H() s 1
s 1
1 s [1 K G ( s ) G ( s )]
E()() s 1 c R s
s1 K1 Gc ( s ) G ( s )
1
ess lim sE ( s )
s0
1 K1 lim Gc ( s ) G ( s )
s0
sites.google.com/site/ncpdhbkhn 34
The Steady – State Error
Ex. 2 of Feedback Control Systems (9)
R() s 1 Y() s
K 40
1 s 5
() Controller
3 Process
Step input
2 Output 2
Error 0.1s 1
1 Sensor
0 1
ess
-1 1 K1 lim Gc ( s ) G ( s )
s0
-2
0 1 2 3 4 5 6 7 8
1
1.5 1
Ramp input 1 2lim40
1 Output s0 s 5
Error
0.5 0.059 5.9%
0
-0.5
-1
-1.5
0 1 2 3 4 5 6 7 8
sites.google.com/site/ncpdhbkhn 35
The Steady – State Error
Ex. 3 of Feedback Control Systems (10)
R() s 1 Y() s
Find K so that the steady – state error to a step K
input is minimize? () Controller s 5
Process
G()() s G s K( s 4) 2
T() s c
s 4
1Gc ( s ) G ( s ) H ( s ) ( s 2)( s 4) 2 K
Sensor
1.2
Es()()()()()() Rs Ys Rs TsRs
1
[1 T ( s )] R ( s )
0.8
1
R( s ) ess lim sE ( s ) 0.6
s s0 Step input
Output
1 0.4 Error
lims [1 T ( s )]
s0 s
1 T (0) 0.2
0
4K
ess 0 T (0) 1 K 4 -0.2
8 2K 0 0.5 1 1.5 2 2.5 3
sites.google.com/site/ncpdhbkhn 36
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 37
Performance Indices (1)
• A performance index is a quantitative measure of
the performance of a system and is chosen so that
emphasis is given to the important system
specifications.
• A system is considered an optimum control system
when the system parameters are adjusted so that
the index reaches an extremum, commonly a
minimum value.
• A performance index must be a number that is
always positive or zero.
• Then the best system is defined as the system that
minimizes this index.
sites.google.com/site/ncpdhbkhn 38
Performance Indices (2)
1
e(t)=r(t)-y(t)
0.5
0
-0.5
-1
The Integral of the Square of the Error 0 5 10 15 20
T
2 1
ISE e ( t ) dt 2
0 0.8 e (t)
0.6
0.4
0.2
0
0 5 10 15 20
2 100
Input r(t)
80
1.5 Output y(t)
60
1
40
0.5
20
ISE
0 0
0 5 10 15 20 0 5 10 15 20
sites.google.com/site/ncpdhbkhn 39
Performance Indices (3)
T Integral of Absolute magnitude of Error, IAE
IAE e ( t ) dt 200
0 150
T
ITAE t e ( t ) dt 100
0 50
T 0
ITSE te2 ( t ) dt 0 5 10 15 20
0
Integral of Time multiplied by Absolute Error, ITAE
1 3000
e(t)=r(t)-y(t)
0.5
2000
0
1000
-0.5
-1 0
0 5 10 15 20 0 5 10 15 20
Integral of Time multiplied by Squared Error, ITSE
100 250
80 200
60 150
40 100
20 50
ISE
0 0
0 5 10 15 20 0 5 10 15 20
sites.google.com/site/ncpdhbkhn 40
Performance Indices (4)
Ex. 1
1 1 R() s 1 1 Y() s
T() s
2 2 s 2
s2 s 1 s2 0.75 s 1 () s
8
ISE
ITAE
7
ITSE
6
5
4
Indices
3
2
1
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
sites.google.com/site/ncpdhbkhn 41
T() s
Performance Indices (5) d
Ex. 2 R() s
K1 K2 X() s Y() s
Find K3 to minimize the effect of the disturbance? () s s
()
P
Y() s k k k
K3
Td () s K p
N
1 LLLLLLn n m n m p ...
n1 n , m n , m , p
nontouching nontouching
= 1 – (sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops)
– (sum of the gain products of all combinations of three nontouching loops)
+ ...
KKK1 1 2
1 KK3 p
s s s
KKK
1 K1 K 1 2 1 K K s1 K K K s 2
3sp s s 1 3 1 2 p
sites.google.com/site/ncpdhbkhn 42
T() s
Performance Indices (6) d
Ex. 2 R() s
K1 K2 X() s Y() s
Find K3 to minimize the effect of the disturbance? () s s
()
P
Y() s k k k
K3
Td () s K p
1 2
1 K1 K 3 s K 1 K 2 Kp s
Pk: gain of kth path from input to output
Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
P1 1
1
1 2 1 K 1 K 3 s
Loop ofK1 K 2 Kp s removed
1
Y() s 1(1K1 K 3 s ) s ( s K 1 K 3 )
1 2 2
Td () s 1KKs1 3 KKKs 1 2p s KKs 1 3 KKK 1 2 p
sites.google.com/site/ncpdhbkhn 43
T() s
Performance Indices (7) d
Ex. 2 R() s
K1 K2 X() s Y() s
Find K3 to minimize the effect of the disturbance? () s s
()
Y() s s() s K K
1 3
2 K3
Td () s s K1 K 3 s K 1 K 2 K p
K p
KKKK10.5; 1 2 p 2.5
Td ( s ) 1/ s
s( s 0.5 K3 ) 1
Y(). s 2
s0.5 K3 s 2.5 s
10 0.25K3 t 2
y() t e sin t , 10(/2) K3
2
210 0.5K3 t 2 1
I y( t ) dt e sin t dt 0.1K3
0 0 2
2 K3
dI 2
K3 0.1 0 K3 10 3.2
dK3
sites.google.com/site/ncpdhbkhn 44
T() s
Performance Indices (8) d
Ex. 2 R() s
K1 K2 X() s Y() s
Find K3 to minimize the effect of the disturbance? () s s
()
Y( s ) s ( s 1.6)
2 K3
Td () s s1.6 s 2.5 K
1.2 p
1
0.8
0.6
t (t)
d
y(t)
0.4
0.2
0
-0.2
0 1 2 3 4 5 6 7 8 9 10
sites.google.com/site/ncpdhbkhn 45
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design Software
sites.google.com/site/ncpdhbkhn 46
The Simplification of
Ex. 1 Linear Systems (1)
KK /10
T(),() s T s
1s( s 2)( s 10) 2 s ( s 2)
1
0.8
0.6
T
1
0.4
0.2
0
0 1 2 3 4 5 6
1
0.8
0.6
T
2
0.4
0.2
0
0 1 2 3 4 5 6
sites.google.com/site/ncpdhbkhn 47
The Simplification of
Linear Systems (2)
m m1 p
am s a m1 s ... a 1 s 1 cp s... c1 s 1
GHL()(), s Kn n1 G s K g p g n
bn s b n1 s ... b 1 s 1 d g s ... d 1 s 1
G()() s M s
H
GL ()() s s
d k
M()k ()() s M s
dsk
d k
()k ()()s s
dsk
2q ( 1)k qMM( k ) (0) (2 q k ) (0)
M2q , q 0,1,2,...
k0 k!(2 q k )!
2q ( 1)k q ( k ) (0) (2 q k ) (0)
2q ,q 0,1,2,...
k0 k!(2 q k )!
M2q 2 q ( q 1,2,...) c , d
sites.google.com/site/ncpdhbkhn 48
The Simplification of
Ex. 1 Linear Systems (3)
10 1
GHL()() s3 2 G s 2
s10 s 16 s 10 d2 s d 1 s 1
1
G() s
H 0.1s3 s 2 1.6 s 1
2
GH ( s ) d2 s d 1 s 1 M ( s )
3 2
GL ()() s0.1s s 1.6 s 1 s
(0) 2 (0) (0) 3 2 (0)
M( s ) d2 s d 1 s 1 M (0) 1 (s ) 0.1 s s 1.6 s 1 (0) 1
(1) (1) (1) 2 (1)
M( s ) 2 d2 s d 1 M (0) d 1 (s ) 0.3 s 2 s 1.6 (0) 1.6
(2) (2) (2) (2)
M( s ) 2 d2 M (0) 2 d 2 (s ) 0.6 s 2 (0) 2
M(3)( s ) 0 M (3) (0) 0 (3)(s ) 0.6 (3) (0) 0.6
sites.google.com/site/ncpdhbkhn 49
The Simplification of
Ex. 1 Linear Systems (4)
10 1
GHL()() s3 2 G s 2
s10 s 16 s 10 d2 s d 1 s 1
(0) (1) (2) (3)
M(0)1, M (0) d1 , M (0) 2 d 2 , M (0)0
(0)(0) 1, (1) (0) 1.6, (2) (0) 2, (3) (0) 0.6
2q ( 1)k qMM( k ) (0) (2 q k ) (0)
M 2q
k0 k!(2 q k )!
( 1)01MMMM (0) (0) (20) (0) ( 1) 11 (1) (0) (21) (0)
q1 M
2 0!(2 0)! 1!(2 1)!
( 1)2 1MM (2) (0) (2 2) (0)
2!(2 2)!
( 1)MMMMMM(0) (0) (2) (0) (1) (0) (1) (0) ( 1) (2) (0) (0) (0)
2 1 2
1 2d d d 2 d 1
2 1 1 2 2d d 2
2 1 2 2 1
sites.google.com/site/ncpdhbkhn 50
The Simplification of
Ex. 1 Linear Systems (5)
10 1
GHL()() s3 2 G s 2
s10 s 16 s 10 d2 s d 1 s 1
(0) (1) (2) (3) 2
M(0)1, M (0) d1 , M (0)2, d 2 M (0)0, M 2 2 d 2 d 1
(0)(0) 1, (1) (0) 1.6, (2) (0) 2, (3) (0) 0.6
2q ( 1)k q ( k ) (0) (2 q k ) (0)
2q
k0 k!(2 q k )!
( 1)01(0) (0) (20) (0) ( 1) 11(1) (0) (21) (0)
q 1
2 0!(2 0)! 1!(2 1)!
( 1)2 1 (2) (0) (2 2) (0)
2!(2 2)!
( 1) (0) (0) (2) (0) (1) (0) (1) (0) ( 1) (2) (0) (0) (0)
2 1 2
1 2 1.6 1.6 2 1
0.56
2 1 2
sites.google.com/site/ncpdhbkhn 51
The Simplification of
Ex. 1 Linear Systems (6)
10 1
GHL()() s3 2 G s 2
s10 s 16 s 10 d2 s d 1 s 1
(0) (1) (2) (3) 2
M(0)1, M (0) d1 , M (0)2, d 2 M (0)0, M 2 2 d 2 d 1
(0) (1) (2) (3)
(0) 1, (0) 1.6, (0) 2, (0) 0.6, 2 0.56
2
M2 2 2 d 2 d 1 0.56 d1 1.4864
MMMMMM(0)(0) (4) (0) (1) (0) (3) (0) (2) (0) (2) (0)
q2 M
4 0!4! 1!3! 2!2!
MMMM(1)(0) (3) (0) (0) (0) (4) (0)
d 2
3!1! 4!0! 2
(0)(0) (4) (0) (1) (0) (3) (0) (2) (0) (2) (0)
4 0!4! 1!3! 2!2!
(1)(0) (3) (0) (0) (0) (4) (0)
0.68
3!1! 4!0!
2
M4 4 d 2 0.68 d2 0.8246
sites.google.com/site/ncpdhbkhn 52
The Simplification of
Ex. 1 Linear Systems (7)
10 1 1
GHL()() s3 2 G s 2 2
s10 s 16 s 10 d2 s d 1 s 1 0.8246s 1.4864 s 1
1
0.8
0.6
G
H
0.4
0.2
0
0 1 2 3 4 5 6 7 8 9 10
1
0.8
0.6
G
L
0.4
0.2
0
0 1 2 3 4 5 6 7 8 9 10
sites.google.com/site/ncpdhbkhn 53
The Simplification of
Ex. 1 Linear Systems (8)
10 1 1
GHL()() s3 2 G s 2 2
s10 s 16 s 10 d2 s d 1 s 1 0.8246s 1.4864 s 1
G G
H L
1
3 0.8
0.6
2
0.4
1
0.2
3 2
0 0
-0.2
ImaginaryPart
-1 ImaginaryPart
-0.4
-2
-0.6
-3 -0.8
-1
-8 -7 -6 -5 -4 -3 -2 -1 0 1 -1 -0.5 0 0.5 1
Real Part Real Part
sites.google.com/site/ncpdhbkhn 54
The Performance
of Feedback Control Systems
1. Introduction
2. Test Input Signals
3. Performance of Second – Order Systems
4. Effects of a Third Pole & a Zero on the Second –
Order System Response
5. The s – Plane Root Location & the Transient
Response
6. The Steady – State Error of Feedback Control Systems
7. Performance Indices
8. The Simplification of Linear Systems
9. System Performance Using Control Design
Software
sites.google.com/site/ncpdhbkhn 55
System Performance Using
Ex. Control Design Software
R() s s 2 1 Y() s
Gc () s G() s
() s 0.1s 1
sites.google.com/site/ncpdhbkhn 56
Các file đính kèm theo tài liệu này:
- bai_giang_control_system_design_chapter_v_the_performance_of.pdf