Analysis of bending of corrugated metal sheet

Báo cáo trình bày một số kết quả tính uốn theo phương pháp giải tích của tấm kim loại lượn sóng hình sin chịu điều kiện biên bản lề 4 cạnh. Tấm lượn sóng hình sin được quy đổi về tấm phẳng tương đương thông qua quy đổi độ cứng màng và độ cứng uốn. Kết quả số của độ võng tính trên tấm phẳng tương đương được so sánh và đánh giá với kết quả tính theo ANSYS.

pdf5 trang | Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 215 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Analysis of bending of corrugated metal sheet, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Nguyễn Đình Ngọc và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 63 - 67 ANALYSIS OF BENDING OF CORRUGATED METAL SHEET Nguyen Dinh Ngoc*, Nguyen Thi Hue College of Technology - TNU SUMMARY The article presents some results of the bending of sinusoidal corrugated metal plate under the boundary conditions 4 hinge edge by analytic methods. Sinusoidal corrugated metal plates are converted to orthotropic flat plates based on equivalent membrane stiffness and bending stiffness. Numerical results of deflections calculated on flat plates are compared and evaluated with the ANSYS results. Keywords: Corrugated plate, deflection, equivalent orthotropic plate, ANSYS, FEM INTRODUCTION* Corrugated plates are found in all branches of engineering practise. The corrugations reinforce the plates and improve their strength to weight ratio. Because of these superiorities, corrugated plates are popular in decking, roofing and sandwich plate core structures. Corrugated plates of wave form made of isotropic materials were considered as flat orthotropic plates with corresponding orthotropic constants determined by the Syedel’s technique [3]. This approach was presented in [1-2]. In these papers, the authors converted corrugated plate into equivalent flat plates by means of only bending stiffness but without membrane stiffness. The purpose of the present paper is to calculate deflections of corrugated plates on its model equivalent orthotropic plate including both equivalent membrane stiffness and bending stiffness. These equivalent stiffness bases on Briassouli’s technique [4]. SINUSOIDAL CORRUGATED PLATE AND ITS EQUIVALENT FLAT PLATE Consider a rectangular symmetrical corrugated plate in the form of a sine wave (Fig.1). The plate is subjected to uniform contribution load in the z direction. Suppose the portion of cross-section line of the corrugated plate in the plane (x, z) has the form of a sine wave. x zH sin l Where: H – wave amplitude; l- half wave y z y z b x b h o H x s o l a a 1) 2) Fig.1. Sinusoidal corrugated plate and its equivalent plate * Tel: 0984 076555, Email: ngocnd@tnut.edu.vn 63 Nguyễn Đình Ngọc và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 63 - 67 Linear strain-displacement relationships for a From the stress – strain relationships, after such corrugated plate based on [5] are: integrating through the thickness of the plate uw2   kw k   we obtain the expressions for stress resultants: xxxx2 N A.*   A.***  M  D.k  D.k vw2 x 11 x 12 y x 11 x 12 y yy k   2 (1) **** yyNy A. 12  x  A. 22  y M y  D.k 12 x  D.k 22 y (2) u  v 2 w **   k  2 Nxy A 66 .  xy M xy  D 66 .k xy xyy  x xy  x  y * Where: Aij , Aij coefficients of membrane Where u, v, and w denote displacement of a stiffness of a corrugated plate. point along x, y and z directions respectively,  , * x Dij , Dij coefficients of bending y, xy are strains; k is the curvature of the stiffness of a corrugated plate portion line in (x, z) plane, which is defined as: Based on Briassouli’s technique [4], z''  H 2  x corrugated plates are converted to flat plates kz ''  sin 3 ll2 by using stiffness which is described by 1 z '2 2 flowing coefficients: 2 E2 A111 12 E Eh. 3 ll ADD**1 ;. 1  1122 1112. 1   ss 11 62H2 E2  s s s  12 21  1122  12   sin h E1  l2 l l EE s    2 A** A1  2222 D  D 1  6 1   H/ h 22 22 12  22 22  12   E11  l  E  3 **E.. h E h AAD66  66; 66  2  2D66 21 23  24 1 **** AADD12  12 22;. 12  12 22 According to [5], the static equations of a plate are the form: N N x xy 0 xy NN xy y 0 (3) xy 2M 22MM x 2pxy  y  x22  x  y  y n hk Where: J (k) z (i) dz,i  0,1,2 , i   k1 hk1 64 Nguyễn Đình Ngọc và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 63 - 67 Substituting (1), 2 into (3) we get a set of static equations of a corrugated plate in terms of displacements. 2u  2 u  2 v H  2  x  w H  3  x A****** A  A  A  Asin .  A cos . w  0 11x2 66 y 2 12 66 x  y 11 l 2 l  x 11 l 3 l 2 2 2 2 *****v  v  u H   x  w AAAAA222 66 2   66   2 sin .  0 y x12x  y 12 l l  y (4) 4w  4 w  4 w D****2 D  2 D  2 D  p 11 x4 12 66  x 2  y 2 22  y 4 These equations are used to study static and dynamic states of corrugated plates in the form of sine wave. BENDING PROBLEM Boundary condition Consider a simply supported rectangular corrugated plate in the form of sine wave, the boundary condition are: w = 0, v = 0, Mx = 0, u0 at x = 0, x = a w = 0, u = 0, My = 0, v0 at y = 0, y = b Bending problem The displacement field satisfying boundary conditions can be chosen as follows :  m x n y  u U cos sin  mn ab m 1 n 1   m x n y  (5) v  Vmn sin cos  m 1 n 1 ab  m x n y  w  Wmn sin sin  m 1 n 1 ab Where m, n are natural numbers representing the number of half waves in the x and y directions, respectively. Applying the Galerkin – Bubnov procedure, we obtain a set of algebraic equations in matrix form as follows:   n11 n 12 n 13   U mn  0  n n n V  0 21 22 23 mn    (6) n n n W  4 ab  31 32 33  mn  p mn2 Where: 65 Nguyễn Đình Ngọc và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 63 - 67 11m2 2 b n 2 2 a n A****  A; n  n  A  A mn 2 1111 66 12 21  12 66  44ab a m32 lbH A* cos 1 11  2 2 2 2 l 1 **n a m b n13 ; n 22  A  A a2 ml a 2 ml a 4 22 b 66 a a mb42 m22 nH lA* cos 1 DDD**22* 12  113  12 66  44 l 1 a * na nn23 ; 33   D22 a2 ml a 2 ml 4 mn2 2 4 4b3  ab RESULTS AND DISCUSSION A simply supported sinusoidally corrugated plate (Fig. 2) that is subjected to a uniformly distributed load of 100 Pa is considered. The dimensions of the plate are: H = 10mm, ℓ = 100 mm, thickness h = 18 mm, E = 30 GPa, µ=0.3, =7380 kg/m3, contribution load p = 100Pa, a = b = 1800mm and 9 corrugations. Fig. 2. Model of metal corrugated sheet The results of deflections of corrugated plates calculated by analytic method are compared with the ANSYS results. The deflections along the center line of x axis (y=0.9m) and of y axis (x=0.9m) of the plate are calculated and compared with the ANSYS results, as is shown in table 1 and 2. Table 1. Deflections along the center line (y=0.9m) of a simply supported sinusoidal corrugated plate. Error relative to Calculated points ANSYS (mm) Present results (mm) ANSYS results (%) (0.9, 0.2) 0.069 0.068 1.45 (0.9, 0.4) 0.128 0.127 0.78 (0.9, 0.9) 0.191 0.190 0.52 Table 2. Deflections along the center line (x=0.9m) of a simply supported sinusoidal corrugated plate. Error relative to Calculated points ANSYS (mm) Present results (mm) ANSYS results (%) (0.2, 0.9) 0.072 0.073 1.39 (0.4, 0.9) 0.131 0.133 1.53 (0.9, 0.9) 0.192 0.193 0.52 66 Nguyễn Đình Ngọc và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 63 - 67 CONCLUSION DEFLECTION REFERENCE 1. Khuc Van Phu, Le Van Dan. (2007), Vibration According to Briassouli’s technique [3], the of corrugated cross-ply laminated composite paper presents analytic method to calculate plates, Journal of science 23, pp 105-112. 2. Dao Huy Bich, Khuc Van Phu. (2006), Non- the deflections of the plate. Equivalent linear analysis on stability of corrugated cross-ply expressions of stiffness are applied to analysis laminated composite plates. Vietnam J. of 0 bending of corrugated metal plates. The Mech.VAST, vol.28, N 4, , pp.197-206. 3. Seydel E. (1931), Schubknickversuche mit results obtained by analytic method and the Welblechtafeln, DVL – Bericht. ANSYS results are identical and the errors are 4. Demetres Briassoulis. (1986), Equivalent orthotropic properties of corrugated sheets. small, this confirms the believe of equivalent Computer & Structures, Vol. 23. No. 2.pp. 129-138. flat plates. 5. Reddy J.N. (2004), Mechanics of Laminate composite plates and shells: Theory and Analysis. This approach can be used to analysis of CRC Press. stability problems, impact for sinusoidally 6. Tran Ich Thinh, Nguyen Dinh Ngoc, Analysis corrugated plate and trapezoidally of vibration of corrugated composite plate. corrugated plate. National conference of solid mechanics, 2010. TÓM TẮT PHÂN TÍCH UỐN TẤM KIM LOẠI LƯỢN SÓNG Nguyễn Đình Ngọc*, Nguyễn Thị Huệ Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên Báo cáo trình bày một số kết quả tính uốn theo phương pháp giải tích của tấm kim loại lượn sóng hình sin chịu điều kiện biên bản lề 4 cạnh. Tấm lượn sóng hình sin được quy đổi về tấm phẳng tương đương thông qua quy đổi độ cứng màng và độ cứng uốn. Kết quả số của độ võng tính trên tấm phẳng tương đương được so sánh và đánh giá với kết quả tính theo ANSYS. Từ khóa: Tấm lượn sóng, độ võng, tấm trực hướng, ANSYS, PTHH Ngày nhận bài:20/6/2015; Ngày phản biện:06/7/2015; Ngày duyệt đăng: 30/7/2015 Phản biện khoa học: PGS.TS Ngô Như Khoa - Trường Đại học Kỹ thuật Công nghiệp - ĐHTN * Tel: 0984 076555, Email: ngocnd@tnut.edu.vn 67

Các file đính kèm theo tài liệu này:

  • pdfanalysis_of_bending_of_corrugated_metal_sheet.pdf
Tài liệu liên quan