Giáo trình Đào tạo máy trưởng hạng ba môn vẽ kỹ thuật

Ký hiệu quy ước về mối ghép bằng hàn gồm có :ký hiệu bằng chữ về loại hàn, ký hiệu bằng hình vẽ về kiểu mối hàn, kích thước mặt cắt mối hàn, chiều dài mối hàn, ký hiệu phụ đặc trưng cho vị trí của mối hàn và vị trí tương quan của các mối hàn. Ví dụ : C2 – 6 – 100/200 - C2 : Kiểu mối hàn chập không vát hai đầu. - 6 : Chiều cao mối hàn 6mm. - 100/200 : Mối hàn đứt quãng, chiều dài mỗi quãng 100mm, khoảng cách giữa các quãng là 200mm. - : Hàn theo đường bao hở.

doc67 trang | Chia sẻ: phanlang | Ngày: 27/04/2015 | Lượt xem: 969 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Giáo trình Đào tạo máy trưởng hạng ba môn vẽ kỹ thuật, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ệ thu nhỏ 1: 2 1: 2,5 1: 4 1: 5 1: 10 1: 15 1: 20. Tỉ lệ nguyên hình 1: 1 Tỉ lệ phóng to 2: 1 2,5: 1 4: 1 5: 1 10: 1 20: 1 40: 1 Bài 2 : ĐƯỜNG NÉT 2.1. Các loại đường nét : Trong bản vẽ ngoài hình dáng vật thể ra còn có các đường nét có tính chất khác nhau, được thể hiện trong bản sau : Tên gọi Hình dạng Bề rộng Ứng dụng Nét cơ bản b = 0,4 ÷1,4mm - Vẽ đường bao thấy Nét mảnh b/3 - Vẽ đường gióng, đường kích thước. - Đường đáy ren. - Đường gạch gạch trên mặt cắt. Nét khuất b/2 - Vẽ đường bao khuất. Nét lượn sóng b/3 - Vẽ đường giới hạn phần bị cắt lìa. - Đường phân cách giữa phần hình chiếu và hình cắt. Nét chấm gạch b/3 - Vẽ đường trục, đường tâm. Nét cắt 1,5.b - Đánh dấu vị trí củamặt phẳng cắt (vết mp cắt) Chiều rộng của nét vẽ cần chọn sao cho phù hù hợp với độ lớn của hình vẽ, với khổ giấy và phải chọn trong dãy kích thước sau : 0,18; 0,25; 0,35; 0,5; 0,7; 1; 1,4 và 2mm. 2.2. Qui tắc vẽ nét : - Khi hai hay nhiều nét khác loại trùng nhau thì theo thứ tự ưu tiên : nét liền đậm, nét đứt, nét chấm gạch mảnh. - Khi vẽ nét chấm gạch mảnh, cần vẽ sao cho nó bắt đầu và kết thúc bằng nét gạch, nét gạch này vượt khỏi đường bao thấy một đoạn từ 3 đến 5 lần chiều rộng nét đậm. - Ở tâm đường tròn phải vẽ hai nét gạch cắt nhau rõ ràng. Nếu đường tròn nhỏ hơn 12mm thì chỉ cần vạch hai nét liền mảnh làm đường tâm. - Nét đứt và nét liền đậm thẳng hang thì chỗ nối tiếp vẽ hở, các trường hợp khác, các nét cắt nhau cần vẽ chạm vào nhau. 2.3. Chữ viết 2.3.1. Khổ chữ : Ký hiệu h là gía trị được xác định bằng chiều cao của chữ hoa tính bằng mm. Có các khổ chữ sau : 2,5; 3,5; 5; 7; 10; 14; 20; 28; 40 (mm). 2.3.2. Kiểu chữ : Có các kiểu chữ sau : - Kiểu A : viết chữ và chữ số đứng hoặc nghiêng 750 với nét chữ rộng bằng 1/14h. - Kiểu A : viết chữ và chữ số đứng hoặc nghiêng 750 với nét chữ rộng bằng 1/10h. 2.3.3. Kích thước của chữ và chữ số : (để đơn giản, ta chỉ xét chữ và chữ số kiểu B viết đứng). Dù là chữ hoa, chữ thường hay chữ số, khi viết ta cần biết hai kích thước là chiều cao và chiều rộng. Các loại kích thước này đều tính theo khổ chữ h (h : tùy chọn). 2.3.4. Ghi kích thước 2.3.4.1. Qui định chung : - Con số kích thước ghi trên bản vẽ là cơ sở để xác định độ lớn thực của vật thể, nó không phụ thuộc vào tỉ lệ bản vẽ và độ chính xác của hình vẽ. - Kích thước độ dài ghi trên bản vẽ dùng milimét làm đơn vị, không cần ghi ký hiệu đơn vị (mm) sau con số. Kích thước góc, dùng đơn vị độ, phút, giây và phải ghi ký hiệu. Ví dụ : 40020’15’’. - Số lượng kích thước ghi trên bản vẽ phải đủ để chế tạo vật thể, không được ghi thiếu. Nhưng cũng không được ghi thừa, mỗi kích thước chỉ ghi một lần trên bản vẽ và ghi ở hình chiếu nào thể hiện rõ rang nhất hình dạng vật thể. 2.3.4.2. Thành phần của một kích thước : 2.3.4.2.1. Đường gíong : vẽ bằng nét liền mảnh, vuông góc với đoạn muốn ghi kích thước, vượt qua đường kích thước một khoảng từ 2 đến 5mm. Có thể dùng đường tâm kéo dài làm đường gíong. 2.3.4.2.2. Đường kích thước : vẽ bằng nét liền mảnh, song song với đoạn muốn ghi kích thước và cách đoạn này một khoảng từ 5 đến 10mm. Không được dùng đường tâm, đường trục, đường bao làm đường kích thước. 2.3.4.2.3. Mũi tên : đặt ở hai đầu đường kích thước, chạm vào đường going. Góc của mũi tên khoảng chừng 300, độ lớn của mũi tên tỉ lệ thuận với chiều rộng nét cơ bản. Nếu đường kích thước ngắn quá, mũi tên được vẽ ở ngoài đường gióng hoặc thay thế hai mũi tên đối đầu bằng một chấm đậm hay một gạch xiên. 2.3.4.2.4. Con số kích thước : nói chung, con số kích thước phải viết rõ ràng, chính xác, ở phía trên và ở giữa đường kích thước. Con số kích thước Mũi tên Đường gióng Đường kích thước * Đối với kích thước độ dài : - Khi đường kích thước nằm ngang : con số kích thước nằm ở phía trên đường kích thước. - Khi đường kích thước thẳng đứng hoặc nghiêng : con số kích thước nằm ở phía bên trái đường kích thước. - Khi đường kích thước nghiêng sang trái : con số kích thước nằm ở phía bên phải đường kích thước. - Khi đường kích thước nghiêng nằm trong phần gạch gạch : con số kích thước được gióng ra ngoài và đặt trên giá nằm ngang. * Đối với kích thước góc : Hướng viết của con số tùy thuộc vào phương của đường vuông góc với đường phân giác góc đó. 2.4. Một số qui định khi ghi các loại kích thước : 2.4.1. Kích thước song song : Khi có nhiều kích thước song song nhau, ta ghi kích thước nhỏ trước lớn sau. Khi đó các con số kích thước viết sole nhau và khoảng cách các đường kích thước vẽ đều nhau. 2.4.2. Kích thước đường tròn : Đường tròn phải ghi kích thước đường kính, trước số đo đường kính ghi thêm ký hiệu phi (Ø). Đường kích thước kẻ qua tâm hoặc vẽ ở ngoài đường tròn và có vẽ mũi tên. 2.4.3. Kích thước cung tròn : Cung tròn phải ghi kích thước bán kính. Trước số đo bán kính ghi thêm ký hiệu R. Đường kích thước xuất phát từ tâm cung tròn và chạm vào cung tròn bằng một mũi tên. Các đường kích thước của các cung tròn đồng tâm không được nằm trên một đường thẳng. Nếu cung tròn bán kính quá lớn, cho phép đặt tâm gần cung và đường kích thước được vẽ gấp khúc. 2.4.4. Kích thước hình vuông : Trước kính thước cạnh hình vuông ghi thêm ký hiệu . CÂU HỎI VÀ BÀI TẬP CHƯƠNG 2 1. Hãy nêu thành phần của một kích thước ? 2. Hãy nêu một số qui định khi ghi các loại kích thước ? 3. Bài tập : Vẽ đường nét. Chương 3 VẼ HÌNH HỌC Bài 1 : DỰNG HÌNH CƠ BẢN 1.1. Dựng đường thẳng song song : Bài tập : Cho một đường thẳng a và một điểm C ở ngoài đường thẳng a. Hãy dựng đường thẳng b song song với a và đi qua C. Cách dựng : - Trên đường thẳng a, lấy điểm B tùy ý làm tâm, vẽ cung tròn có bán kính BC. Cung này cắt đường thẳng a tại A. - Lấy C làm tâm, vẽ cung tròn có bán kính CB. Lấy B làm tâm, vẽ cung tròn có bán kính AC, hai cung này cắt nhau tại D. - Nối CD, đó là đường thẳng b phải dựng. Với b//a. 1.2. Dựng đường thẳng vuông góc : Bài tập : Cho một đường thẳng a và một điểm C ở ngoài đường thẳng a. Hãy dựng đường thẳng b qua C và vuông góc với đường thẳng a. Cách dựng : - Lấy C làm tâm, vẽ một cung tròn có bán kính lớn hơn khoảng cách từ C đến a. Cung này cắt đường thẳng a tại hai điểm A và B. - Lấy A và B làm tâm, vẽ hai cung tròn có bán kính AC và BC. Hai cung này cắt nhau tại C và D. - CD là đường thẳng phải dựng. Bài 2 : CHIA ĐỀU ĐƯỜNG TRÒN 2.1. Chia đường tròn ra 3, 6 phần bằng nhau : 2.1.1. Chia 3 : - Kẻ đường kính AB. - Lấy A hoặc B làm tâm, vẽ một cung tròn có bán kính bằng bán kính vòng tròn. - Cung này cắt vòng tròn tại hai điểm E và F. - Ba điểm A (hoặc B), E, F chia vòng tròn ra 3 phần bằng nhau. 2.1.2. Chia 6 : - Kẻ đường kính AB. - Lấy A và B làm tâm, vẽ hai cung tròn có bán kính bằng bán kính vòng tròn. - Hai cung này cắt vòng tròn tại bốn điểm E, F, G, H. - Sáu điểm A, B, E, F, G, H chia vòng tròn ra 6 phần bằng nhau. 2.2. Chia vòng tròn ra các phần bằng nhau : 2.2.1. Chia 4 : - Kẻ hai đường kính AB và CD vuông góc với nhau. - Bốn điểm A, B, C, D chia vòng tròn ra 4 phần bằng nhau. 2.2.2. Chia 8 : - Kẻ hai đường kính AB và CD vuông góc với nhau. - Kẻ hai đường phân giác EF và GH. - Các điểm A, B, C, D, E, F, G, H chia vòng tròn ra 8 phần bằng nhau. 2.2.3. Chia vòng tròn ra 5, 10 phần bằng nhau : * Cách chia : - Kẻ hai đường kính vuông góc AB và CD. - Tìm trung điểm M của OA. - Lấy M làm tâm kẻ cung tròn có bán kính MC. Cung này cắt AB tại N. + CN là độ dài của hình lục giác đều. + ON là độ dài của hình 10 cạnh đa giác đều. 2.2.4. Tổng quát : Chia vòng tròn ra n phần bằng nhau (với n = 2, 3, 4, 5…….). Cách chia : ví dụ n = 7 - Kẻ hai đường kính vuông góc AB và CD. - Lấy D (hoặc C) làm tâm, vẽ cung tròn có bán kính CD. Cung này cắt AB tại hai điểm E và F. - Chia CD ra 7 phần bằng nhau. - Nối E và F với điểm chẳn (hoặc lẽ). - Các đường E2, E4, E6 và F2, F4, F6 cắt vòng tròn tại các điểm, và các điểm này chia vòng tròn ra 7 phần bằng nhau. Bài 3 : VẼ MỘT SỐ ĐƯỜNG CONG HÌNH HỌC 3.1. Đường Sin : Đường Sin là đường cong có phương trình : y = sinα. Cách vẽ như sau : - Kẻ 2 đường thẳng vuông góc ox và oy làm hai trục tọa độ và vẽ đường tròn đường kính d có tâm nằm trên trục ox. - Trên ox lấy đoạn OA = π.d rồi chia đều đường tròn và đoạn OA ra 12 phần bằng nhau, bằng các điểm chia 1, 2, 3,…….12 và 1’, 2’, 3’,………12’. - Qua các điểm chia 1, 2, 3…..12 trên đường tròn, kẻ các đường song song với ox, oy và qua các điểm 1’, 2’, 3’,………12’, kẻ các đường thẳng song song với oy. - Mỗi cặp đường thẳng song song với ox và oy tương ứng cắt nhau, ta xác định một điểm thuộc đường sin phải vẽ. 3.2. Đường Parabôn : Đường Parabôn là quĩ tích của những điểm cách đều một điểm cố định F và một đường thẳng cố định d MH = MF Điểm F là tiêu điểm của parabôn, đường thẳng d là đường chuẩn của parabôn, đường vuông góc kẻ từ F đến đường thẳng d là trục đối xứng của parabôn. 3.2.1. Vẽ parabôn khi biết tiêu điểm F và đường cong chuẩn d : (H1) * Cách vẽ : - Trên trục đối xứng của parabôn lấy một điểm bất kỳ và từ đó kẻ đường song song với đường chuẩn d. - Vẽ cung tròn tâm F bán kính bằng khoảng cách giữa đường thẳng song song với đường chuẩn d. Giao điểm của cung tròn này so với đường thẳng song song đó là điểm thuộc parabôn. Các điểm khác cũng vẽ theo cách vẽ tương tự như trên. 3.2.2. Vẽ parabôn nội tiếp trong một góc (phương pháp hai hang điểm) : (H2) Cho góc AOB, vẽ parabôn đi qua hai điểm A, B và nội tiếp trong góc đó. * Cách vẽ : - Chia đều hai cạnh OA và OB ra cùng một số phần bằng nhau bằng các điểm chia 1, 2, 3….và 1’, 2’, 3’…..như hình vẽ. - Nối các điểm chia tương ứng 1-1’, 2-2’, 3-3’,…. - Từ các điểm chia 2, 4, 2’,4’, kẻ các đường thẳng song song với trung tuyến OI. - Giao điểm của các đường song song này và đường trung tuyến OI với các đường 1-1’, 2-2’, 3-3’,….xác định các tiếp điểm của các đường 1-1’, 2-2’, 3-3’,….với parabôn. Parabôn đi qua hai điểm A, B và các tiếp điểm đó. 3.3. Đường Hypecbôn : Hypecbôn là quĩ tích của những điểm có hiệu số khoảng cách đến hai điểm cố định F1 và F2 bằng một hằng số bé hơn khoảng cách giữa hai điểm F1 và F2. MF1 – MF2 = A1A2 = 2a F1 và F2 là hai tiêu điểm của hypecbôn, đường thẳng nối liền hai tiêu điểm là trục của hypecbôn. A1 và A2 là hai đỉnh của hypecbôn. Vẽ hypecbôn khi biết hai tiêu điểm và hai đỉnh. * Cách vẽ như sau : - Trên trục đi qua hai tiêu điểm F1 và F2 của hypecbôn lấy một điểm tùy ý ở ngoài 2 tiêu điểm. - Vẽ đường tròn tâm F1, bán kính bằng khoảng cách từ điểm vừa lấy đến đỉnh A1 và đường tròn tâm F2, bán kính bằng khoảng cách từ điểm vừa lấy đến đỉnh A2. - Giao điểm của hai đường tròn đó là điểm thuộc hypecbôn, các điểm khác cũng vẽ theo cách vẽ tương tự như trên. Bài 4 : HÌNH ÔVAN – ĐƯỜNG ELÍP 4.1. Ôvan : Ôvan là đường cong khép kín có hình dạng giống như đường elíp, được tạo bởi bốn cung tròn từng đôi một bằng nhau. Ôvan có hai trục đối xứng vuông góc nhau. Khi vẽ người ta cho biết độ dài của hai trục đó. * Cách vẽ như sau : - Vẽ cung tròn tâm O, bán kính OA, cung tròn này cắt trục ngắn kéo dài tại E. - Vẽ cung tròn tâm C bán kính CE, cung tròn này cắt đường thẳng AC tại F. - Vẽ đường trung trực của đoạn AF, đường này cắt trục dài tại điểm O1 và trục ngắn tại điểm O3. Hai điểm O1 và O3 là tâm của cung tròn KI và LM. - Lấy các điểm đối xứng của O1 và O3 qua tâm O, ta có điểm O2 và O4, chúng là tâm của cung MN và NK ta phải vẽ. Đường ôvan được dùng để vẽ các mặt bích, đường bao của một số chi tiết máy và thường dùng thay thế các elíp trong trường hợp vẽ gần đúng. 4.2. Hình elíp : Elíp là quỹ tích của những điểm có tổng số khoảng cách đến hai điểm cố định F1 và F2 bằng một hằng số lớn hơn khoảng cách giữa hai điểm F1 và F2. MF1 + MF2 = AB = 2a F1 và F2 là hai tiêu điểm của elíp, đoạn thẳng nối liền hai tiêu điểm là trục dài của elíp. 4.2.1. Vẽ elíp khi biết hai trục AB và CD - Vẽ đường kính tùy ý của hai đường tròn tâm O, rồi từ giao điểm của đường kính đó với đường tròn nhỏ kẻ đường thẳng song song với trục dài AB và từ giao điểm của đường kính đó với đường tròn lớn kẻ đường thẳng song song với trục ngắn CD. - Giao điểm của hai đường song song vừa kẻ là điểm thuộc elíp. Các điểm khác cũng vẽ theo cách vẽ tương tự. Để tiện vẽ elíp, ta kẻ các đường kính sao cho chúng chia đều đường tròn. 4.2.2. Vẽ elíp khi biết hai đường kính liên hợp EF và GH 1.2.2.1. Phương pháp hai chùm tia. Cách vẽ như sau : - Qua hai điểm E và F kẻ hai đường song song với đường kính GH và qua hai điểm G và H kẻ hai đường song song với đường kính EF ta được hình bình hành MNPQ. - Chia đều các đoạn OG và MG ra cùng một số phần như nhau bằng các điểm chia 1, 2, 3….và 1’, 2’, 3’….. - Nối điểm E với các điểm 1’, 2’, 3’….. và nối điểm F với các điểm 1, 2, 3…. - Giao điểm của hai tia tương ứng thuộc hai chùm tia E và F đó xác định điểm thuộc elíp. 1.2.2.2. Phương pháp tâm điểm. Cách vẽ như sau : - Qua hai điểm E và F kẻ hai đường thẳng song song với đường kính GH và qua hai điểm G, H kẻ hai đường song song với đường kính EF, ta được hình bình hành MNPQ. - Vẽ tam giác vuông cân EIM nhận đoạn EM làm cạnh huyền. - Vẽ cung tròn tâm E bán kính bằng EI, cung tròn này cắt cạnh MQ tại hai điểm K và L. - Từ hai điểm K và L kẻ hai đường song song với đường kính EF. Các đường này cắt hai đường chéo MP và QN của hình bình hành tại bốn điểm 1, 2, 3, 4. - Elíp phải vẽ đi qua bốn điểm 1, 2, 3, 4 và bốn điểm E, F, G, H. CÂU HỎI VÀ BÀI TẬP CHƯƠNG 3 1. Hãy nêu cách dựng đường thẳng song song với một đường thẳng và một điểm cho trước? 2. Hãy nêu cách chia vòng tròn bằng phương pháp tổng quát ? 3. Hãy nêu cách vẽ parabôn khi biết tiêu điểm F và đường cong chuẩn d ? 4. Hãy nêu cách vẽ elíp khi biết hai trục AB và CD ? Chương 4 HÌNH CHIẾU VUÔNG GÓC Bài 1 : KHÁI NIỆM VỀ CÁC PHÉP CHIẾU Phép chiếu là quá trình vẽ hình biểu diễn của vật thể trên mặt phẳng, được thực hiện như sau : Giả sử trong không gian, ta lấy một mặt phẳng P và một điểm S cố định ở ngoài mặt phẳng P. Từ một điểm A bất kỳ trong không gian, nếu ta dựng đường thẳng SA, đường này cắt mặt phẳng P tại A’. Ta nói rằng ta đã thực hiện một phép chiếu, ta đã chiếu điểm A lên mặt phẳng P và ta gọi : - S là tâm chiếu. - A là vật chiếu. - SA là tia chiếu. - P là mặt phẳng chiếu. - A’ là hình chiếu của A trên mặt phẳng P. Có hai loại phép chiếu : Phép chiếu xuyên tâm và phép chiếu song song. 1.1. Phép chiếu xuyên tâm : Phép chiếu xuyên tâm là phép chiếu mà các tia chiếu đi qua một điểm S cố định. Lúc đó, điểm A’ gọi là hình chiếu xuyên tâm của A trên mặt phẳng P và tâm chiếu là S. 1.2. Phép chiếu song song : Phép chiếu song song là phép chiếu mà các tia chiếu luôn luôn song song với một đường thẳng cố định l gọi là phương chiếu. Qua A dựng một đường thẳng song song với phương chiếu l, đường này cắt mặt phẳng P tại A’. A’ được gọi là hình chiếu song song của A trên mặt phẳng P, theo phương chiếu l. Tùy theo vị trí của phương chiếu l đối với mặt phẳng P, phép chiếu song song có thể chia ra làm 2 loại : 1.2.1. Phép chiếu xiên : Là phép chiếu nếu phương chiếu l xiên (không vuông góc) với mặt phẳng P thì phép chiếu song song gọi là phép chiếu xiên. Lúc đó, A’ được gọi là hình chiếu xiên của A… 1.2.2. Phép chiếu vuông góc : Là phép chiếu nếu phương chiếu l vuông góc với mặt phẳng P thì phép chiếu song song gọi là là phép chiếu vuông góc. Lúc đó A’ được gọi là hình chiếu vuông góc của A… Phương chiếu l Phương chiếu l Phương chiếu l Bài 2 : HÌNH CHIẾU CỦA MỘT ĐIỂM, ĐƯỜNG, MỘT MẶT PHẲNG 2.1. Hình chiếu của một điểm : 2.1.1. Trên hai mặt phẳng hình chiếu : Từ điểm A tùy ý trong không gian, ta dựng đường vuông góc với P1 và P2. Ta có A1 trên P1 và A2 trên P2. Điểm A1 được gọi là hình chiếu đứng và điểm A2 được gọi là hình chiếu bằng của điểm A. Để vẽ hai hình chiếu của điểm A trên cùng một mặt phẳng, ta xoay P2 quanh trục x một góc 900 theo chiều qui ước để P1 ≡ P2. Ta có cặp điểm A1A2 nằm trên đường vuông góc với trục x và gọi là hình biểu diễn của điểm A (còn gọi là đồ thức của điểm A). Để đơn giản ta chỉ vẽ trục x và cặp hình chiếu A1, A2. Như vậy, một điểm A bất kỳ trong không gian được biểu diễn bằng một cặp điểm A1, A2 (A1A2 ┴ x) trên một mặt phẳng (P1 ≡ P2). Ngược lại, có cặp điểm A1, A2 ta có thể xác định được điểm A trong không gian bằng cách xoay P2 trở lại vị trí nằm ngang, dựng các đường vuông góc từ A2 trở lên và A1 ra, giao điểm của hai đường này chính là điểm A. 2.1.2. Trên ba mặt phẳng hình chiếu : Sau khi chiếu vuông góc điểm A lên P1 và P2 (như đã xét), người ta chiếu vuông góc điểm A lên P3 và được A3. A3 gọi là hình chiếu cạnh của điểm A Ta nhận thấy : Trong không gian, ba hình chiếu A1, A2, A3 nằm trên ba đỉnh của một hình hộp Sau khi đã xoay P2 quanh trục x và P3 quanh trục z cho trùng với P1 thì ba hình chiếu A1, A2, A3 cùng nằm trên một mặt phẳng bản vẽ (P1 ≡ P2 ≡ P3), chúng mang tính chất sau đây : A1A2 ┴ Ox A1A3 ┴ Oz AXA2 ┴ AZA3 Nhờ tính chất này, bao giờ ta cũng vẽ được hình chiếu thứ ba khi biết hai trong ba hình chiếu của điểm. 2.2. Hình chiếu của một đường thẳng : (hoặc đoạn thẳng) 2.2.1. Trên một mặt phẳng : Tùy theo vị trí của đoạn thẳng đối với mặt phẳng chiếu, có ba trường hợp : - Đoạn thẳng xiên với mặt phẳng hình chiếu : thì hình chiếu của nó là một đoạn thẳng không song song và có độ dài không bằng nó. - Đoạn thẳng song song với mặt phẳng hình chiếu : thì hình chiếu của nó là một đoạn thẳng song song và có độ dài bằng nó. - Đoạn thẳng vuông góc với mặt phẳng hình chiếu : thì hình chiếu của nó là một điểm. 2.2.2. Trên ba mặt phẳng : Muốn tìm hình chiếu của một đoạn thẳng trên ba mặt phẳng hình chiếu P1, P2, P3. Trước hết ta xét xem vị trí của đoạn thẳng đó đối với từng mặt phẳng hình chiếu. Rồi tùy trường hợp (xiên, song song, vuông góc) ta sẽ tìm được ba hình chiếu của đoạn thằng trên ba mặt phẳng hình chiếu dễ dàng. Sau đó, xoay P2, P3 cho trùng với P1 (theo chiều qui ước), ta sẽ có ba hình chiếu của đoạn trên một mặt phẳng của bản vẽ. 2.3. Hình chiếu của một mặt phẳng :(hoặc hình phẳng) 2.3.1. Trên một mặt phẳng : Tùy theo vị trí của hình phẳng đối với mặt phẳng hình chiếu, có 3 trường hợp : - Hình phẳng xiên với mặt phẳng hình chiếu : hình chiếu của nó là hình phẳng không song song và không bằng nó. - Hình phẳng song song với mặt phẳng hình chiếu : hình chiếu của nó là hình phẳng song song và bằng nó. - Hình phẳng vuông góc với mặt phẳng hình chiếu : hình chiếu của nó là một đoạn thẳng. 2.3.2. Trên ba mặt phẳng : Muốn tìm hình chiếu của một hình phẳng trên ba mặt phẳng hình chiếu. Trước hết, ta xét xem vị trí của hình phẳng đó đối với từng mặt phẳng hình chiếu. Rồi tùy trường hợp (xiên, song song, vuông góc) ta sẽ tìm được ba hình chiếu của hình phẳng trên ba mặt phẳng hình chiếu dễ dàng. Sau đó, xoay P2 và P3 cho trùng với P1(theo chiều qui ước), ta sẽ có ba hình chiếu của hình phẳng trên một mặt phẳng bản vẽ. Bài 3 : HÌNH CHIẾU CỦA KHỐI HÌNH HỌC Các khối hình học cơ bản có thể chia ra làm hai loại : khối đa diện và khối tròn. A. Khối đa diện : 3.1. Hình lăng trụ : 3.1.1. Hình chiếu của khối hình hộp chữ nhật : Để dễ vẽ, ta đặt các mặt của hình hộp song song hoặc vuông góc với các mặt phẳng hình chiếu. Có điểm K nằm trên mặt hình hộp, để xác định hình chiếu của K, qua K ta vẽ một đường thẳng nằm trên mặt hình hộp. 3.1.2. Hình chiếu của hình lăng trụ đáy tam giác đều : 3.1.3. Hình chiếu của hình lăng trụ đáy lục giác đều : * Chú ý : Cách vẽ hình chiếu của các hình lăng trụ đáy tam giác đều, lục giác đều, ngũ giác đều…cũng như việc xác định hình chiếu của điểm K nằm trên mặt khối cách vẽ cũng tương tự như khi vẽ hình hộp chữ nhật, học sinh tự nghiên cứu trên các hình vẽ. 3.2. Hình chóp : 3.2.1. Hình chiếu của hình chóp đáy vuông : Chú ý : muốn xác định một điểm K nằm trên mặt của hình chóp, ta có thể dùng một trong hai cách sau đây : Cách 1 : Kẻ qua đỉnh S và điểm K đường thẳng SK nằm trên mặt bên của hình chóp. Cách 2 : Qua K kẻ hình đa giác đồng dạng với mặt đáy của hình chóp. Hình đa giác này chính là giao tuyến của một mặt phẳng tưởng tượng (H) cắt qua hình chóp.(mặt phẳng H // với đáy hình chóp và đi qua điểm K) 3.2.2. Hình chiếu của hình chóp đáy lục giác đều : B. Khối tròn : 3.3. Hình trụ : 3.4. Hình nón :(hình côn) Chú ý : muốn xác định một điểm K nằm trên mặt nón, ta dùng hai cách đã học khi xác định điểm K trên mặt bên của hình chóp. Nghĩa là : - Kẻ đường thẳng SK nằm trên mặt nón. Nói cách khác, qua K kẻ một đường sinh. - Qua K kẻ đường tròn song song với mặt đáy của hình nón. (Hay là dùng mặt phẳng H // với mặt đáy hình nón cắt hình nón ngang qua K). Học sinh tự vẽ cách này. 3.5. Hình cầu : Chú ý : muốn xác định một điểm K trên mặt cầu, ta dựng qua K một đường tròn nằm trên mặt cầu, đồng thời mặt phẳng (H) chứa đường tròn đó song song với một mặt phẳng hình chiếu. CÂU HỎI VÀ BÀI TẬP CHƯƠNG 4 1. Hãy nêu khái niệm về phép chiếu xuyên tâm, phép chiếu song song ? 2. Hãy vẽ hình chiếu của một mặt phẳng trên một mặt phẳng ? 3. Hãy vẽ hình chiếu của khối hình hộp chữ nhật trên ba mặt phẳng ? Chương 5 HÌNH CHIẾU CỦA VẬT THỂ Bài 1 : CÁC LOẠI HÌNH CHIẾU Hình chiếu của vật thể là hình biểu diễn bề mặt nhìn thấy của vật thể đối với người quan sát. Cho phép thể hiện các phần khuất của vật thể bằng nét đứt để giảm số lượng hình biểu diễn. Hình chiếu của vật thể gồm có 3 loại hình : hình chiếu đứng, hình chiếu bằng, hình chiếu cạnh. - Hình chiếu đứng : là hình chiếu nhìn từ trước đối với vật thể. - Hình chiếu bằng : là hình chiếu nhìn từ trên đối với vật thể. - Hình chiếu cạnh : là hình chiếu nhìn từ trái đối với vật thể. Bài 2 : CÁCH VẼ HÌNH CHIẾU VÀ GHI KÍCH THƯỚC 2.1. Cách vẽ hình chiếu : Một vật thể đơn giản hay phức tạp đều được tạo thành bởi những khối hình học cơ bản. Hình chiếu của vật thể là tổng hợp hình chiếu của các khối hình học cơ bản tạo thành vật thể đó. Khi vẽ hình chiếu của vật thể, ta phải biết phân tích vật thể thành những phần có hình dạng của các khối hình học cơ bản và xác định rõ vị trí tương đối giữa chúng, rồi vẽ hình chiếu của từng phần đó và giao tuyến giữa các mặt của chúng, chúng ta sẽ được hình chiếu của vật thể. Trong khi vẽ, cần vận dụng những kiến thức cơ bản về biểu diễn điểm, đường, mặt, giao tuyến của các mặt để vẽ cho đúng. 2.2. Ghi kích thước : 2.2.1. Phân tích kích thước : Kích thước của vật thể được chia ra 3 loại : - Kích thước định hình : là kích thước xác định độ lớn của từng khối hình học cơ bản tạo thành vật thể. - Kích thước định vị : là kích thước xác định vị trí tương đối giữa các khối hình học cơ bản. Chúng được xác định vị trí trong không gian 3 chiếu. Mỗi chiều chọn một đường hay một mặt của vật thể làm chuẩn. - Kích thước định khối : (kích thước choán chỗ) là kích thước xác định ba chiều chung cho vật thể. Để ghi kích thước ta phải chọn các yếu tố hình học (điểm, đường, mặt) nào đó của vật thể làm chuẩn, từ đó xác định các yếu tố khác của vật thể. Mỗi chiều của vật thể thường được chọn một chuẩn và thường lấy mặt đáy, mặt phẳng đối xứng của vật thể hay trục hình học cơ bản làm chuẩn. 2.2.2. Phân bố kích thước : Để kích thước ghi trên bản vẽ được rõ ràng, cách phân bố kích thước phải hợp lý. Khi ghi cần chú ý một số điểm sau : - Mỗi kích thước chỉ được phép ghi một lần trên bản vẽ, không được ghi thừa. - Các kích thước định hình của bộ phận nào, nên ghi trên hình biểu diễn thể hiện rõ đặc trưng hình dạng của bộ phận đó. - Những kích thước có lien quan, biểu thị cùng một bộ phận của vật thể thì nên ghi gần nhau. - Những kích thước của cấu tạo bên trong và bên ngoài, nên ghi về hai phía của hình biẻu diễn. - Mỗi kích thước được ghi ở một vị trí rõ ràng của bản vẽ, nên ghi ở ngoài hình biểu diễn và nên ghi tập trung ở trên một số hình biểu diễn, nhất là ghi trên hình chiếu chính. Bài 3 : CÁCH ĐỌC BẢN VẼ HÌNH CHIẾU CỦA VẬT THỂ Để đọc bản vẽ của hình chiếu vật thể cần lưu ý một số điểm sau : - Khi đọc, người đọc phải xác định đúng hướng nhìn cho từng hình biểu diễn. Theo các hướng nhìn từ trước, từ trên, từ trái để hình dung hình dạng : mặt trước, mặt trên, mặt phải…của vật thể. - Phải nắm chắc đặc điểm hình chiếu của các khối hình học cơ bản, rồi căn cứ theo hình chiếu mà chia vật thể thành một số bộ phận. Phân tích hình dạng từng bộ phận đi đến hình dung toàn bộ vật thể. - Phải phân tích được ý nghĩa từng đường nét thể hiện trên các hình chiếu. Nét liền đậm, nét đứt, nét chấm gạch… mỗi nét thể hiện đường nào đó của vật thể. - Đối với những vật thể không dễ phân tích thành các bộ phận, có thể dùng cách phân tích đường, mặt. Ta biết rằng, bất kỳ một vật thể nào cũng được giới hạn bởi một số mặt, các mặt đó có vị trí tương đối khác nhau, chúng có thể song song với nhau hoặc cắt nhau. Nếu chúng song song với nhau thì có mặt ở trên có mặt ở dưới, hay có mặt ở trước có mặt ở sau. CÂU HỎI VÀ BÀI TẬP CHƯƠNG 5 1. Hãy nêu các loại hình chiếu của vật thể ? 2. Hãy nêu cách vẽ bản vẽ hình chiếu của vật thể ? 3. Hãy nêu cách đọc bản vẽ hình chiếu của vật thể ? Chương 6 HÌNH CHIẾU TRỤC ĐO Bài 1 : KHÁI NIỆM VỀ HÌNH CHIẾU TRỤC ĐO 1.1. Khái niệm : Vật thể Hình chiếu trục đo Trong các bản vẽ kỹ thuật thường dùng các hình chiếu vuông góc vì chúng biểu diễn chính xác hình dạng và kích thước của vật thể. Song mỗi hình chiếu vuông góc chỉ thể hiện hai chiều của vật thể, làm người đọc khó hình dung ra hình dạng không gian của vật thể đó. Hình chiếu trục đo thể hiện đồng thời trên một hình biểu diễn cả ba chiều của vật thể, nên hình vẽ có tính lập thể. Vì vậy, trong vẽ kỹ thuật, người ta dùng phương pháp hình chiếu trục đo bổ sung cho phương pháp các hình chiếu vuông góc. 1.2. Hệ số biến dạng : Hệ số biến dạng là tỉ số giữa độ dài hình chiếu của đoạn thẳng nằm trên trục tọa độ với độ dài của đoạn thẳng đó gọi là hệ số biến dạng. : Hệ số biến dạng theo trục đo O’x’. : Hệ số biến dạng theo trục đo O’y’. : Hệ số biến dạng theo trục đo O’z’. 1.3. Phân loại : 1.3.1. Theo phương chiếu : gồm có : - Hình chiếu trục đo xiên cân : nếu phương l không vuông góc với P’. - Hình chiếu trục đo vuông góc : nếu phương l vuông góc với P’. 1.3.2. Theo hệ số biến dạng : gồm có : - Hình chiếu trục đo đều : nếu ba hệ số biến dạng bằng nhau (p = q = r) - Hình chiếu trục đo cân : nếu hai trong ba hệ số biến dạng bằng nhau (p = q ≠ r). - Hình chiếu trục đo lệch : nếu ba hệ số biến dạng từng đôi một không bằng nhau (p ≠ q ≠ r). 1.3.3. Vừa theo phương chiếu vừa theo hệ số biến dạng : gồm có : - Hình chiếu trục đo vuông góc đều, vuông góc cân, vuông góc lệch. - Hình chiếu trục đo xiên đều, xiên cân, xiên lệch. Bài 2 : HÌNH CHIẾU TRỤC ĐO VUÔNG GÓC ĐỀU 2.1. Khái niệm : Hình chiếu trục đo vuông góc đều là loại hình chiếu trục đo vuông góc có phương chiếu l vuông góc với P’ và có các hệ số biến dạng p = q = r. Vị trí các trục đo : và p = q = r ≈ 1. 2.2. Ký hiệu : 2.3. Nhận xét : - Trục O’Z’ thẳng đứng, O’X’, O’Y’ hợp với đường nằm ngang một góc 300 . - Các hình phẳng của vật thể đều bị biến dạng trên hình chiếu trục đo. (ví dụ : hình chữ nhật biến thành hình bình hành, hình vuông biến thành hình thoi, hình tròn biến thành elip, góc 900 biến thành góc 600 hay 1200). - Các cạnh nào của vật thể mà song song với các trục tọa độ thì giữ nguyên kích thước ở trên hình chiếu trục đo vuông góc đều (vì p = q = r = 1). Bài 3 : HÌNH CHIẾU TRỤC ĐO XIÊN CÂN 3.1. Khái niệm : Hình chiếu trục đo xiên cân là loại hình chiếu trục đo xiên (l xiên với P’) và có hai trong ba hệ số biến dạng bằng nhau (p ≠ p = r). Loại hình chiếu trục đo này có vị trí các trục đo như hình sau : các hệ số biến dạng qui ước p = r = 1 và q = 0,5. 3.2. Ký hiệu : 3.3. Nhận xét : - Trục đo O’X’ vuông góc với trục đo O’Z’. Trục đo O’Y’ hợp với đường nằm ngang một góc 450. Từ đó, ta có thể suy ra vị trí của ba trục đo xiên cân khi dựng hình chiếu trên trục đo xiên cân như sau : - Các hình phẳng của vật thể trùng hoặc song song với mặt phẳng tọa độ XOZ thì vẫn giữ nguyên hình dạng và kích thước trên hình chiếu trục đo xiên cân. - Các hình phẳng của vật thể không song song với mặt phẳng tọa độ XOZ thì sẽ biến dạng trên hình chiếu trục đo xiên cân. (ví dụ : hình chữ nhật, hình vuông biến thành hình bình hành; hình tròn biến thành hình elíp; góc 900 biến thành góc 450 hoặc 1350 ) Bài 4 : CÁCH DỰNG HÌNH CHIẾU TRỤC ĐO Khi dựng hình chiếu trục đo, ta thường đặt các trục tọa độ theo các chiều dài, chiều rộng, chiều cao của vật thể rồi lấy một mặt (mặt trước hay mặt đáy) làm cơ sở từ đó dựng các mặt khác. Ta có thể theo trình tự sau đây : 1. Chọn loại hình chiếu trục đo (xiên cân hoặc vuông góc đều). Dùng êke, compa, thước để xác định vị trí các trục đo. 2. Vẽ trước một mặt làm cơ sở, mặt vật thể đặt trùng với mặt phẳng tọa độ.(Thường chọn mặt cơ sở trùng với mặt X’O’Z’, tương tự hình chếu đứng của vật thể hay chọn mặt cơ sở trùng với mặt X’O’Y’ tương tự như hình chiếu bằng của vật thể). 3. Từ các đỉnh của mặt cơ sở, kẻ các đường song song với trục đo thứ ba. 4. Đặt các đoạn thẳng lên các đường song song vừa vẽ. Kích thước của các đoạn này có được bằng cách căn cứ vào kích thước trên trục tọa độ tương ứng (ở vật thể hay ở hình chiếu đề bài) nhân với hệ số biến dạng. 5. Nối các điểm đã được xác định và hoàn thành hình vẽ bằng nét mảnh. 6. Xóa bỏ nét thứa và tô đậm hình chiếu trục đo. 7. Ghi kích thước. VÍ DỤ : Hãy vẽ hai hình chiếu trục đo : xiên cân, vuông góc đều của vật thể, thể hiện bởi hai hình chiếu đứng và bằng sau : Cách vẽ như sau : Hình chiếu trục đo xiên cân Bước 4 : Hình chiếu trục đo vuông góc đều Hình chiếu trục đo xiên cân Bước 3 : Hình chiếu trục đo vuông góc đều x' y' z' o' x' y' z' o' x' y' z' o' x' y' z' o' B u ?c 1 : Hình chi?u tr?c d o xiên cân Hình chi?u tr?c d o vuông góc d ?u B u ?c 2 : Hình chi?u tr?c d o xiên cân Hình chi?u tr?c d o vuông góc d ?u Bước 1 : Hình chiếu trục đo vuông góc đều Hình chiếu trục đo xiên cân Bước 2 : Hình chiếu trục đo vuông góc đều Hình chiếu trục đo xiên cân Bước 5 : Hình chiếu trục đo vuông góc đều Hình chiếu trục đo xiên cân Bước 6 và 7 : Hình chiếu trục đo vuông góc đều Hình chiếu trục đo xiên cân CÂU HỎI VÀ BÀI TẬP CHƯƠNG 6 1. Hãy nêu cách phân loại hình chiếu trục đo ? 2. Hãy nêu khái niệm về hình chiếu trục đo vuông góc đều và xiên cân ? 3. Hãy nêu cách dựng hình chiếu trục đo ? Chương 7 HÌNH CẮT, MẶT CẮT Bài 1 : KHÁI NIỆM VỀ HÌNH CẮT VÀ MẶT CẮT Đối với những vật thể có cấu tạo bên trong phức tạp (vật thể có phần rỗng, có rãnh…), nếu chỉ dùng hình chiếu để biểu diễn thì hình vẽ có nhiều nét đứt, làm cho bản vẽ không rõ. Khắc phục điều đó, người ta dùng loại hình biểu diễn khác là hình cắt và mặt cắt để biểu diễn cấu trúc bên trong của vật thể. Bài 2 : HÌNH CẮT 2.1. Định nghĩa : Hình cắt là hình biểu diễn phần còn lại của vật thể sau khi đã tưởng tượng bỏ đi phần vật thể giữa mặt phẳng cắt và người quan sát. Mặt cắt Hình cắt 2.2. Trình tự hoàn thành một hình cắt : - Chọn mặt phẳng cắt : mặt phẳng cắt thường chọn song song với mặt phẳng hình chiếu chứa hình chiếu muốn vẽ cắt (ví dụ : muốn vẽ hình cắt đứng, chọn mặt phẳng cắt song song với P1, muốn vẽ hình cắt bằng chọn mặt phẳng cắt song song với P2,….) và mặt phẳng cắt phải đi qua phần rỗng bên trong vật thể, nếu vật có mặt phẳng đối xứng thì nên chọn mặt phẳng cắt trùng với mặt này. - Bỏ phần vật thể ở giữa người quan sát và mặt phẳng cắt đi. - Chiếu phần vật thể còn lại lên mặt phẳng hình chiếu tương ứng. - Vẽ ký hiệu vật liệu trên các diện tích bị cắt. - Định vị trí mặt phẳng cắt bằng cách : + Dùng nét cắt đặt tại chổ bắt đầu và chỗ kết thúc mặt phẳng cắt. + Dùng một chữ in hoa để gọi tên mặt phẳng cắt (ví dụ : mặt phẳng cắt A-A, B-B,…) - Vẽ mũi tên chỉ hướng quan sát. Mũi tên này phải vuông góc với nét cắt và chạm vào nét cắt. - Gọi tên hình cắt cùng một tên với mặt phẳng cắt (ví dụ : mặt phẳng cắt A-A thì gọi hình cắt A-A…) và đặt tên này ở phía trên hình cắt. Chú ý : Nếu mặt phẳng cắt trùng với mặt phẳng đối xứng của vật thể và hình cắt được đặt đúng vị trí đã qui định thì không cần ghi chú ký hiệu gì về hình cắt. 2.3. Phân loại hình cắt : 2.3.1. Căn cứ theo vị trí mặt phẳng cắt : gồm có : - Hình cắt đứng : là hình cắt có được khi mặt phẳng cắt song song với mặt phẳng hình chiếu đứng P1. - Hình cắt bằng : là hình cắt có được khi mặt phẳng cắt song song với mặt phẳng hình chiếu bằng P2. - Hình cắt cạnh : là hình cắt có được khi mặt phẳng cắt song song với mặt phẳng hình chiếu cạnh P3. - Hình cắt nghiêng : là hình cắt có được khi mặt phẳng cắt không song song với mặt phẳng hình chiếu cơ bản. 2.3.2. Căn cứ theo số lượng mặt phẳng cắt : gồm có : - Hình cắt đơn giản : là hình cắt có được khi dùng một mặt phẳng cắt để cắt vật thể. - Hình cắt phức tạp : là hình cắt có được khi dùng từ hai mặt phẳng cắt trở lên để cắt vật thể. Có hai loại hình cắt phức tạp là hình cắt bậc và hình cắt xoay. + Hình cắt bậc : khi dùng nhiều mặt phẳng cắt song song nhau. Tưởng tượng kết hợp chúng thành một mặt phẳng cắt giống như hình bậc thang. + Hình cắt xoay : khi dùng hai mặt phẳng cắt giao nhau và hợp nhau thành một góc tù. Trước khi chiếu phần còn lại, tưởng tượng xoay mặt cắt nghiêng về song song với mặt phẳng hình chiếu tương ứng. (Khi vẽ : đưa những điểm nẳm trên đường nghiêng về thẳng hàng với đường ngay rồi going qua hình biểu diễn tương ứng). 2.3.3. Một số loại hình cắt đặt biệt : gồm có : - Hình cắt riêng phần : là hình cắt một phần nhỏ của vật thể. Hình cắt này đặt ngay ở vị trí tương ứng trên hình chiếu cơ bản. - Hình chiếu kết hợp hình cắt : để diễn tả hình dạng bên ngoài lẫn bên trong của vật thể trên cùng một hình biểu diễn (mục đích giảm bớt số lượng hình biểu diễn), người ta ghép một phần hình chiếu và hình cắt lại với nhau. Bài 3 : MẶT CẮT 3.1. Định nghĩa : Mặt phẳng cắt Mặt cắt Mặt cắt là hình biểu diễn nhận được trên mặt phẳng cắt khi tưởng tượng dùng mặt phẳng này cắt vật thể. Mặt phẳng cắt phải chọn sao cho các mặt cắt nhận được là các mặtcắt vuông góc. 3.2. Phân loại : Mặt cắt phân làm 2 loại : mặt cắt chập và mặt cắt rời. 3.2.1. Mặt cắt chập : Mặt cắt chập là mặt cắt đặt ngay trên hình chiếu tương ứng. Đường bao của mặt cắt chập vẽ bằng nét liền mảnh, đường bao của hình chiếu tương ứng tại chỗ đặt mặt cắt chập vẫn được vẽ đầy đủ bằng nét đậm. 3.2.2. Mặt cắt rời : Mặt cắt rời là mặt cắt đặt ở ngoài hình chiếu tương ứng. Đường bao của mặt cắt rời vẽ bằng nét liền đậm. Có thể đặt mặt cắt rời ở phần cắt lìa của hình chiếu Mặt phẳng cắt Mặt cắt Mặt cắt chập Mặt cắt rời 3.3. Một số qui định về mặt cắt : - Nói chung, khi vẽ mặt cắt cũng ghi chú ký hiệu như khi vẽ hình cắt (gồm có nét cắt, tên mặt phẳng cắt, mũi tên chỉ hướng quan sát, tên mặt cắt cùng tên với mặt phẳng cắt). - Nếu mặt cắt là hình đối xứng mà trục đối xứng trùng với vết mặt phẳng cắt thì không cần ghi chú ký hiệu. - Nếu mặt cắt chập, mặt cắt rời (đặt ở phần cắt lìa của hình chiếu) không phải là hình đối xứng thì chỉ vẽ nét cắt và mũi tên mà không cần ghi chú A-A, B-B,…Nhờ mũi tên chỉ hướng ta mới phân biệt được phần tử nào ở phía trước, phần tử nào ở phía sau. - Nếu mặt phẳng cắt qua các lỗ hoặc phần lõm tròn xoay (dạng hình trụ, hình nón) thì đường bao của lỗ hay phần lõm đó được vẽ đầy đủ trên mặt cắt. Qui ước này giúp người đọc bản vẽ phân biệt được các lỗ, chỗ lõm tròn xoay với lỗ, rãnh không tròn xoay. CÂU HỎI VÀ BÀI TẬP CHƯƠNG 7 1. Hãy nêu khái niệm về hình cắt, mặt cắt ? 2. Hãy nêu trình tự để vẽ một hình cắt ? 3. Có mấy loại mặt cắt ? Chương 8 VẼ QUI ƯỚC MỘT SỐ CHI TIẾT THÔNG DỤNG Bài 1 : REN VÀ QUI ƯỚC VẼ REN 1.1. Khái niệm : * Đường xoắn ốc : là chuyển động đều của một điểm trên một đường sinh, khi đường sinh quay đều quanh một trục cố định. + Nếu đường sinh là đường thẳng song song với trục quay, ta có đường xoắn ốc trụ. + Nếu đường sinh là đường thẳng cắt trục quay, ta có đường xoắn ốc nón. Sau đây là một số thông số của đường xoắn ốc : - Vòng xoắn : là một phần của đường xoắn ốc được giới hạn bởi hai điểm gần nhau của đường xoắn ốc và cùng nằm trên một đường sinh. - Bước xoắn : là khoảng cách di chuyển của một điểm trên một đường sinh, khi đường sinh đó quay được một vòng, nghĩa là khoảng cách theo chiều trục giữa điểm đầu và điểm cuối của một vòng xoắn. Bước xoắn được ký hiệu là Ph. - Góc xoắn : Sự lien hệ giữa bước xoắn Ph và đường kinh d của hình trụ theo hệ thức sau đây : trong đó α gọi là góc xoắn 1.2. Các yếu tố của ren : Các yếu tố của ren quyết định tính năng của ren. Các yếu tố của ren trụ bao gồm : 1.2.1. Prôfin ren : là đường bao mặt cắt ren, khi mặt phẳng cắt chứa trục ren. Prôfin ren có dạng tam giác đều, tam giác cân, hình thang cân, hình thang thường, hình vuông… 1.2.2. Đường kính ren : gồm có - Đường kính ngoài : là đường kính của mặt trụ đi qua đỉnh ren của ren ngoài hay đi qua đáy ren của ren trong. Ký hiệu : d - Đường kính trong : là đường kính của mặt trụ đi qua đáy ren của ren ngoài hay đi qua đỉnh ren của ren trong. Ký hiệu : d1. - Đường kính trung bình : là đường kính của mặt trụ có đường sinh cắt prôfin ren ở các điểm chia đều bước ren. Ký hiệu d2. 1.2.3. Số đầu mối : là số đường xoắn ốc tạo thành ren. 1.2.4. Bước ren : là khoảng cách giữa hai điểm tương ứng của hai prôfin ren kề nhau theo chiều trục. 1.2.5. Hướng xoắn : là hướng xoắn của đường xoắn ốc tạo thành ren. 1.3. Các loại ren thường dùng : 1.3.1. Ren hệ mét : Prôfin ren là tam giác có góc ở đỉnh bằng 600. Ký hiệu là M. 1.3.2. Ren côn hệ mét : Prôfin ren là tam giác có góc ở đỉnh bằng 600. Ký hiệu là MK. 1.3.3. Ren tròn : Prôfin là cung tròn. Ký hiệu : Rd 1.3.4. Ren ống : dùng trong mối ghép ống, prôfin là tam giác cân có góc ở đỉnh bằng 550. Ren ống có 2 loại : - Ren ống hình trụ : ký hiệu là G. - Ren ống hình côn : có ký hiệu : R (ren ống côn ngoài), Rc (ren ống côn trong) và Rp (ren ống trụ trong). 1.3.5. Ren hình thang : Prôfin ren là hình thang cân có góc ở đỉnh bằng 300. Ký hiệu là Tr. 1.3.6. Ren răng cưa : Prôfin ren là hình thang thường có góc ở đỉnh bằng 300. Ký hiệu là S. Ren hệ mét Ren ống 1.3.7. Ren hình vuông : có prôfin là hình vuông. 1.4. Cách vẽ qui ước ren 1.4.1. Đối với ren thấy : qui ước vẽ như sau : đường kính đỉnh ren vẽ bằng nét liền đậm, đường đáy ren vẽ bằng nét liền mảnh và cách đỉnh ren một đoạn xấp xỉ bằng bước ren. Trên hình chiếu vuông góc với trục ren thì đường tròn đáy ren vẽ hở khoảng ¼ đường tròn ở vị trí tùy ý. 1.4.2. Đối với ren khuất : thì cả đường đỉnh ren và đáy ren đều vẽ bằng nét đứt. 1.4.3. Đường giới hạn ren : vẽ bằng nét liền đậm, đường khuất thì vẽ bắng nét đứt. - Ký hiệu vật liệu trên mặt cắt của ren phải vẽ đến đường đỉnh ren. - Khi cần biểu diễn đoạn ren cạn, nó được vẽ bằng nét liền mảnh Đường giới han ren Ren khuất Ren thấy Bài 2 : VẼ QUI ƯỚC BÁNH RĂNG 2.2. Vẽ qui ước bánh răng trụ Bánh răng được vẽ theo TCVN, qui định như sau : - Đường tròn và đường sinh mặt đỉnh răng vẽ bằng nét liền đậm. - Đường tròn và đường sinh của mặt chia vẽ bằng nét chấm gạch mảnh. - Không vẽ đường tròn và đường sinh mặt chân răng. - Khi hai bánh răng ăn khớp, các đường đỉnh răng của hai bánh răng đều được vẽ bằng nét liền đậm trên các hình chiếu, còn trên hình cắt (mặt phẳng cắt chứa hai trục của bánh răng) thì qui định đường đỉnh răng của bánh răng chủ động được vẽ bằng nét liền đậm, đường đỉnh răng của bánh răng bị động được vẽ bằng nét đứt. 2.3. Vẽ quy ước bánh răng côn Răng của bánh răng côn được hình thành trên mặt côn, vì vậy kích thước của răng và môđun thay đổi theo chiều dài của răng, càng về phía đỉnh nón kích thước của răng và môđun càng bé Quy ước vẽ bánh răng côn cũng tương tự như quy ước vẽ bánh răng trụ, tuy nhiên chỉ vẽ vòng chia đáy lớn của mặt côn. Bài 3 : QUI ƯỚC VẼ LÒ XO 1.1. Khái niệm Lò xo là chi tiết dự trữ năng lượng, dùng để giảm xóc, ép chặt, đo lực. Lò xo có các loại như sau : lò so xoắn ốc, lò so xoắn phẳng, lò so díp, lò so đĩa. Thông dụng nhất là lò so xoắn ốc. Đối với lò xo xoắn ốc, lò xo có kết cấu phức tạp nên lò xo được vẽ quy ước theo TCVN 14-78 - Hình chiếu và hình cắt của lò xo xoắn trụ ( hay nón ) trên mặt phẳng chiếu song song với trục của lò xo, các vòng xoắn được vẽ bằng các đường thẳng thay cho đường cong - Đối với lò xo xoắn trụ ( hay nón ) có số vòng xoắn lớn hơn 4 vòng thì quy định chỉ vẽ ở mỗi đầu lò xo một hoặc hai vòng xoắn ( trừ các vòng tỳ ) . Những vòng xoắn khác được vẽ bằng nét chấm gạch qua tâm mặt cắt của dây trên toàn bộ chiều dài và cho phép rút ngắn chiều dài của lò xo. - Những lò xo có đường kính của dây lò xo bằng 2mm hay nhỏ hơn thì được vẽ bằng nét cơ bản, mặt cắt của lò xo được tô đen Đối với lò xo xoắn phẳng mà số vòng xoắn lớn hơn 2 vòng thì quy định vẽ vòng đầu và vòng cuối, phần tiếp theo chỉ vẽ một đoạn bằng nét chấm gạch . Đối với lò xo đĩa có số đĩa lớn hơn 4, thì mỗi đầu chỉ vẽ một hoặc hai đĩa, đường bao các đĩa còn lại vẽ bằng nét mảnh . Đối với lò xo díp, quy định chỉ vẽ đường bao của chồng lò xo. 1.2. Vẽ qui ước lò xo Lò xo có hình dạng và kết cấu phức tạp nên được vẽ theo qui ước. - Đối với lò xo xoắn ốc phẳng, lò xo lá, lò xo nhíp được vẽ như sau - Đối với lò xo xoắn ốc được vẽ như sau : CÂU HỎI VÀ BÀI TẬP CHƯƠNG 8 1. Hãy nêu qui ước vẽ ren ? 2. Hãy nêu qui ước vẽ bánh răng ? Chương 9 CÁC MỐI GHÉP Bài 1 : GHÉP BẰNG REN Ghép bằng ren là loại ghép tháo được, được dùng phổ biến nhất trong các máy móc. Các chi tiết ghép là những chi tiết được tiêu chuẩn hóa. Các mối ghép bằng ren gồm có : 1.1. Ghép bằng bulông : Trong mối ghép bằng bulông, người ta luồn qua lỗ các chi tiết bị ghép rồi lồng vòng đệm vào bulông và vặn chặt đai ốc lại. 1.2. Ghép bằng vít cấy : Trước hết vặn đoạn ren cấy vào lỗ ren của chi tiết sau đó lồng vòng đệm vào đầu kia của vít cấy, rồi xiết chặt đai ốc lại. 1.3. Ghép bằng vít : Ghép bằng bulông Ghép bằng vít cấy Ghép bằng vít Dùng cho loại ghép chịu lực nhỏ, vít được trực tiếp vặn vào lỗ ren, không cần đến đai ốc. Ghép bằng bulông Ghép bằng vít cấy Ghép bằng vít 1.4. Ghép bằng ống nối : Để nối các ống lại với nhau, thường dùng các phần nối (đầu nối) ghép với ống bằng ren trụ và được tiêu chuẩn hóa. Bài 2 : GHÉP BẰNG THEN, CHỐT 2.1. Ghép bằng then : Ghép bằng then là loại ghép tháo được, thường dùng để ghép các chi tiết lắp với trục. Then là chi tiết được tiêu chuẩn hóa, kích thước của then được chọn theo kích thước danh nghĩa của trục và lỗ. Kích thước của then gồm 3 kích thước : rộng, cao, dài (b x h x l). Then có các loại : 2.1.1. Then bằng : dùng trong cơ cấu có trọng tải nhỏ và trục lắp trượt hay lắp cố định với lỗ, nếu lắp trượt thì then được cố định trên trục bằng vít. Khi lắp, hai mặt bên của then bằng là mặt tiếp xúc. Then bằng có kiểu đầu tròn, ký hiệu là A và kiểu đầu vuông ký hiệu là B. 2.1.2. Then bán nguyệt : được qui định trong TCVN 4217-86. Với hai thông số rộng, cao (b x h). Loại này dùng để truyền lực và mômen tương đối nhỏ nhưng có khả năng tự điều chỉnh được vị trí. Khi lắp, hai mặt bên của then là mặt tiếp xúc. 2.1.3. Then vát : được qui định trong TCVN 4214-86. Đây là loại dùng để truyền lực và mômen lớn. Loại này được chia làm 3 loại : then tròn ký hiệu là A, then vuông ký hiệu là B và kiểu có mấu. Khi lắp, then được đóng chặt vào rãnh của lỗ và trục, mặt bên và mặt dưới của then là hai mặt tiếp xúc, then vát có độ dốc bằng 1: 100. Then bằng kiểu B Then bằng kiểu A Then vát Then bán nguyệt 2.2. Ghép bằng chốt : 2.2.1. Ưng dụng : Chốt dùng để lắp ghép hay định vị các chi tiết lắp ghép với nhau. 2.2.2. Phân loại : Chốt là chi tiết tiêu chuẩn hóa, gồm có 2 loại : chốt trụ và chốt côn. Chốt côn có độ côn bằng 1: 50 và lấy đường kính đầu bé làm đường kính danh nghĩa. Kích thước của chốt trụ và chốt côn được tiêu chuẩn hóa theo TCVN. 2.2.3. Ký hiêu : Ký hiệu của chốt gồm có : đường kính danh nghĩa d, kiểu lắp (đối với chốt trụ), chiều dài và số hiệu tiêu chuẩn của chốt. Ví dụ : Chốt trụ 10 x TCVN 2042-86. Chốt côn 10 x TCVN 2041-86. Để đảm bảo độ chính xác khi lắp, trong trường hợp định vị, người ta khoan đồng thời các lỗ trên các chi tiết bị ghép. Bài 3 : GHÉP BẰNG ĐINH TÁN 3.1. Khái niệm : Mối ghép bằng đinh tán là mối ghép không tháo được, nó dùng để ghép các tấm kim loại có hình dạng và kết cấu khác nhau. Theo công dụng, mối ghép đinh tán có 3 loại : - Mối ghép chắc : dùng cho kết cấu kim loại khác nhau như : cầu, giàn… - Mối ghép kín : dùng cho các thùng chứa, nồi hơi có áp suất thấp. - Mối ghép chắc kín : dùng cho các kết cấu đòi hỏi vừa chắc vừa kín như các nồi hơi có áp suất cao. 3.2. Các loại đinh tán : đinh tán có 3 loại chính sau : Đinh tán mủ chỏm cầu Đinh tán mủ nửa chìm Đinh tán mủ chìm - Đinh tán mũ chỏm cầu. - Đinh tán mũ nửa chìm. - Đinh tán mũ chìm. Khi tán, đinh được cắm vào lỗ làm sẳn ở chi tiết bị ghép, mũ đinh tựa lên cối, sau đó dùng búa tay hay búa máy tán đầu kia của đinh thành mũ để ghép hai chi tiết lại với nhau. Cách vẽ đinh tán theo qui ước Biểu diễn và kí hiệu quy ước các mối ghép không tháo được theo TCVN 4179 – 85 a) Các loại đinh tán khác nhau được biểu diễn quy ước nhu8 bảng 7-2 b) Nếu trong những mối ghép đinh tán có nhiều mối ghépcùng loại, thì cho phép biểu diễn đo8n giản môỵ vài mối ghép, các mối ghép còn lại được đánh dấu vị trí bằng đường tâm. Bài 4 : GHÉP BẰNG HÀN 4.1. Khái niệm : Hàn là quá trình ghép các chi tiết bằng phương pháp làm nóng chảy cục bộ để dính kết các chi tiết lại với nhau. Phần kim loại nóng chảy sau khi nguội sẽ tạo thành mối hàn. Hàn có nhiều ưu điểm như ít tốn kim loại, công nghệ đơn giản, ít tốn thời gian, khối lượng giảm, mối ghép chắc. 4.2. Các loại mối ghép hàn : Mối ghép hàn được chia làm các loại sau : 4.2.1. Mối ghép hàn đối đỉnh : Ký hiệu là Đ. Hai chi tiết ghép đối đầu với nhau, mối hàn hình thành giữa hai mép vát đầu của hai chi tiết. Mối hàn này thường dùng trong ngành chế tạo vỏ tàu, thùng chứa. 4.2.2. Mối hàn ghép chữ T : Ký hiệu là T. Hai chi tiết ghép với nhau tạo thành hình chữ T, mối hàn hình thành phía trong góc giữa hai chi tiết, có thể là một phía hay hai phía. Mối hàn này thường dung để ghép thép hình làm các dầm, cầu trục… 4.2.3. Mối hàn ghép góc : Ký hiệu là G. Hai chi tiết ghép với nhau tạo thành một góc (thường là góc vuông), mối hàn hình thành ở góc giữa chi tiết. Mối hàn này thường dùng để ghép vỏ hộp giảm tốc, giá đở, gân chịu lực, mặt bích… Mối hàn ghép đối đỉnh Mối hàn ghép chồng Mối hàn ghép chữ T Mối hàn ghép góc 4.2.4. Mối hàn ghép chập : Ký hiệu là C. Hai chi tiết ghép chập với nhau, mối hàn hình thành ở mép đầu chi tiết, có thể là một phía hay hai phía. Mối hàn này thường dùng để ghép các thép tấm, thép thanh…. 4.3. Cách ghi ký hiệu qui ước mối hàn Ký hiệu quy ước về mối ghép bằng hàn gồm có :ký hiệu bằng chữ về loại hàn, ký hiệu bằng hình vẽ về kiểu mối hàn, kích thước mặt cắt mối hàn, chiều dài mối hàn, ký hiệu phụ đặc trưng cho vị trí của mối hàn và vị trí tương quan của các mối hàn. Ví dụ : C2 – 6 – 100/200 - C2 : Kiểu mối hàn chập không vát hai đầu. - 6 : Chiều cao mối hàn 6mm. - 100/200 : Mối hàn đứt quãng, chiều dài mỗi quãng 100mm, khoảng cách giữa các quãng là 200mm. - : Hàn theo đường bao hở. CÂU HỎI VÀ BÀI TẬP CHƯƠNG 9 1. Hãy nêu các mối ghép bằng ren ? 2. Hãy nêu các mối ghép bằng then, chốt ? 3. Hãy nêu các mối ghép bằng hàn ? Mục lục Lời nói đầu Chương 1: VẬT LIỆU, DỤNG CỤ VÀ CÁCH SỬ DỤNG §1. Vật liệu vẽ và cách sử dụng 1.1. Vật liệu vẽ 1.2. Cách sử dụng §2. Dụng cụ vẽ và cáh sử dụng 2.1. Dụng cụ vẽ 2.2. Cách sử dụng Chương 2 : TIÊU CHUẨN TRÌNH BÀY BẢN VẼ KỸ THUẬT §1. Tiêu chuẩn bản vẽ kỹ thuật 1.1. Tiêu chuẩn bản vẽ kỹ thuật 1.2. Tỉ lệ §2. Đường nét 2.1. Các loại đường nét 2.2. Quy tắc vẽ nét 2.3. Chữ viết 2.4. Một số quy định khi ghi các loại kích thước Chương 3 : VẼ HÌNH HỌC §1. Dựng hình cơ bản 1.1. Dựng đường thẳng song song 1.2. Dựng đường thẳng vuông góc §2. Chia đều đường tròn 2.1. Chia đường tròn ra 3,6 phần bằng nhau 2.2. Chia vòng tròn ra các phần bằng nhau §3. Vẽ một số đường cong hình học 3.1. Đường sin 3.2. Đường parabôn 3.3. Đường hypecbôn §4. Đừơng ovan – đường êlip 4.1. Đường ovan 4.2. Đường êlip Chương 4 : HÌNH CHIẾU VUÔNG GÓC §1. Khái niệm về các phép chiếu 1.1. Phép chiếu xuyên tâm 1.2. Phép chiếu song song §2. Hình chiếu cuả một điểm,một đường, một mặt phẳng 2.1. Hình chiếu của một điểm 2.2. Hình chiếu của một đường 2.3. Hình hiếu của một mặt phẳng §3. Hình chiếu của khối hình học 3.1. Khối đa diện 3.2. Khối tròn 3.3. Khối cầu Chương 5 : HÌNH CHIẾU CỦA VẬT THỂ §1. Các loại hình chiếu §2. Cách vẽ hình chiếu và ghi kích thước 2.1. Cách vẽ hình chiếu 2.2. Ghi kích thước §3. Cách đọc bản vẽ hình chiếu vật thể Chương 6 : HÌNH CHIẾU TRỤC ĐO §1. Khái niệm về hình chiếu trục đo 1.1. Khái niệm 1.2. Hệ số biến dạng 1.3. Phân loại §2. Hình chiếu trục đo vuông góc điểm 2.1. Khái niệm 2.2. Kí hiệu 2.3. Nhận xét §3. Hình chiếu trục đo xiên cân 3.1. Khái niệm 3.2. Kí hiệu 3.3. Nhận xét §4. Cách dựng hình chiếu trục đo 4.1. Cách dựng 4.2. Ví dụ Chương 7: HÌNH CẮT, MẶT CẮT §1. Khái niệm về hình cắt, mặt cắt 1.1. Khái niệm hình cắt 1.2. Khái niệm mặt cắt §2. Hình cắt 2.1. Định nghĩa 2.2. Trình tự hoàn thành một hình cắt 2.3. Phân loại một hình cắt §3. Mặt cắt 3.1. Định nghĩa 3.2. Phân loại 3.3. Một số quy định về mặt cắt Chương 8: VẼ QUY ƯỚC MỘT SỐ CHI TIẾT §1. Ren và quy ước vẽ ren 1.1. Khái niệm về ren 1.2. Các yếu tố của ren 1.3. Các loại ren thường dùng 1.4. Cách vẽ qui ước ren 1.5. Cách ký hiệu các loại ren §2. Vẽ quy ước bánh răng 2.1. Đối với ren thấy 2.2. Đối với ren khuất 2.3. Đường giới hạng ren §3. Quy ước vẽ lò xo 3.1. Khái niệm chung 3.2. Vẽ qui ước lò xo Chương 9: CÁC MỐI GHÉP §1. Ghép đường ren 1.1. Ghép bằng bulông 1.2. Ghép bằng vít cấy 1.3. Ghép bằng vít 1.4. Ghép bằng ống nối §2. Ghép bằng then, chốt 2.1. Ghép bằng then 2.2. Ghép bằng chốt §3. Ghép bằng đinh tán 3.1. Khái niệm 3.2. Các loại đinh tán 3.3. Cách vẽ quy ước các loại đinh tán §4. Ghép bằng hàn 4.1. Khái niệm 4.2. Các loại mối ghép hàn 4.3. Vẽ qui ước mối ghép hàn

Các file đính kèm theo tài liệu này:

  • docmh_07_ve_ky_thuat_7229.doc
Tài liệu liên quan