Influence of the engine mounting system on the automotive ride comfort
Ngày nay độ êm dịu chuyển động của ô tô là một trọng chỉ tiêu quan trọng nhất của ô tô, vì vậy
nghiên cứu độ êm dịu càng ngày càng trở nên quan trọng. Mục tiêu chính nghiên cứu này là đánh
giá ảnh hưởng của thông số hệ thống đệm động cơ đến độ êm dịu của ô tô. Để đạt được mục đích
đó, một mô hình dao động phi tuyến không gian của ô tô với 10 bậc tự do được thiết lập và phần
mềm Matlab/Simulink được sử dụng để mô phỏng và tính toán các hệ số ảnh hưởng. Các thông số
của hệ thống đệm động cơ như độ cứng và hệ số cản lần lượt được phân tích dựa vào tiêu chuẩn
Quốc tế ISO 2631-1(1997-E) về đánh giá ảnh hưởng của dao động và tiếng ồn đến sức khỏe con
người. Kết quả nghiên cứu chỉ ra rằng hệ số cản của đệm cách dao động động cơ có ảnh hưởng rất
lớn đến độ êm dịu khi xe hoạt động trong điều kiện mặt đường quốc lộ Việt Nam. Ngoài ra, kết
quả nghiên cứu cung cấp một cơ sở lý thuyết để thiết kế hệ thống đệm bán tích cực cho động cơ
đốt trong.
6 trang |
Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 182 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Influence of the engine mounting system on the automotive ride comfort, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Lê Văn Quỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 25 - 30
INFLUENCE OF THE ENGINE MOUNTING SYSTEM ON
THE AUTOMOTIVE RIDE COMFORT
Le Van Quynh*, Hoang Anh Tan, Nguyen Khac Minh
College of Technology - TNU
SUMMARY
Nowadays, automotive ride comfort is one of the most important performances of automobile, the
research of automotive ride comfort is getting more and more important. The aim of this study is
to evaluate the influence of the parameters of engine mounting system on automotive ride comfort.
To achieve this goal, a 3-D vibration model for automobile with 10 DOF is established and
Matlab/Simulink is used to simulate and calculate the impact factor. The the parameters of engine
mount system such as stiffness and damping coefficients are analyzed respectively according to
the international standard ISO 2631-1(1997-E) for the assessment of the impact of noise and
vibration to human health. The results show that the damping coefficient of engine mount system
has the greatest influence on automotive ride comfort when engine operates at road surface
conditions in Viet Nam. This study can provide a theoretical basis for the semi-active mounting
system for engine.
Keywords: engine mounting system, vibration model, stiffness, damping, ride comfort
INTRODUCTION* presented to analyze the effects of vehicle
Engine mount is purposed to control an parameters on ride comfort[8].
excessive motion generated from powertrain The major goal of this study is to improve a
system and to isolate vibration and noise to be 3-D non-linear vibration models with 10
transmitted to main system. As vibration DOF. Matlab-simulink software is applied to
design of engine mount is one of the main simulate the automotive vibration model
under the conditions of roads in Vietnam. The
items on the phase of vehicle development,
weighted r.m.s acceleration responses of the
the design should be optimized considering
vertical automotive body, pitch and roll
various design variables and uncertainties. In angles of automotive body are chosen as
recent years, in research on engine mount objective functions. The the parameters of
system, there have been a lot of papers to engine mount system such as stiffness and
mention aspects such as application of damping coefficients are analyzed
ANSYS, A.DAM software... etc for the respectively according to the international
design of engine mount system with the standard ISO 2631-1(1997-E) for the
source of excitation by itself[3-5]. The torque assessment of the impact of noise and
roll axis for a mounting system with non- vibration to human health[9].
proportional damping (under oscillating AUTOMOTIVE VIBRATION MODEL
torque excitation) is indeed decoupled when Physical model
one of the damped modes lies in the torque The arrangement of engine mount system is
roll axis direction and the study has proposed choosed four mounts in this study, so a
the design optimization for engine mounting vibration model engine with 6 DOF is shown
system[6]. in Fig.1.
Study on the effects of the vibration vehicle Many studies indicate that the vertical engine
on ride comfort movement of the vehicle body, pitch and roll angles of engine body
using a linear vibration model with 8 d.o.f. is have the most impact on automotive ride
mentioned by references[7]. A 3-D linear comfort, so a 3-D non-linear automotive
vibration vehicle model with 10 DOF was vibration model with 10 is established to
evaluate the influence of the engine mounting
* Tel: 0943 141653, Email: lequynhdl@yahoo.com system on ride comfort, as shown in Fig.2.
25
Lê Văn Quỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 25 - 30
In Fig. 2, Kij are the suspension stiffness
coefficients; Cij are the suspension damping
T1
coefficients; KTij are the stiffness coefficients
of tires; CTij are the damping coefficients of 1
1
tires; Kek are the stiffness coefficients of the 1
X Y1
engine mount system; Cek are the damping 1
Z1
coefficients of the engine mount system; M
and Me are the sprung mass of the automobile Fig 1. Vibration model of engine mount system
and engine; mAij are the unspung mass of the 2r
K 2r
axles; IX, IY, IeX, IeY are sprung moment of C 2r 2l
B
2r mA2r r
Ze K C 2l
B Z T2r CT2r
inertia about X/Y-axis; L and Le1,2 are e1 e2 q
L 2r K2l
T 2l
Ce1 Ce2 mA2l
K e1 Ke2
1r e C CT2l
wheelbase of automobile and engine; a, b are Te e3
B e Y KT2l q
e1 Ke3 1 2l
e2
K 1r X e L Y
Ce4 2
distance between the centre gravity of Ke4 x
1r Z1l
C 1r X
V x 1
m A1r
C1l b
automobile body and the centre gravity of the q C T1r K
1r 1l
1l
mA1l
K L1r
CT1l L
front/rear tires; Bf and Br are distance between q a
KT1l 1l
B
the centre gravity of automobile body and the f
centre gravity of the left/right tires; Be1 and Fig 2. Vibration model of four – wheel vehicle
B are distance between the centre gravity of
e2 Mathematical model
engine and the left/right mount system of
The combined method known as the multi-
engine; ξij, Zij, Z and Ze are the vertical body system theory and D'Alembert's
displacements; , and 1, e are the angle principle are applied to set up differential
deflection at the centre gravity of the equations to describe vehicle dynamics for the
automobile body and engine; x1, x2 are facilitate simulation where the object is
distance between the font and rear mounting separated into subsystems linked by the force
system of engine and the centre gravity of and moment equations based on multi-body
system theory and D'Alembert's principle is
automobile body; qij are road surface used to set up force and moment equations to
roughnesses; v is the speed of automobile describe automotive dynamic system.
(i=1,2 and j=left, right; k=1÷4 ). Diagram of forces and torques are shown in
Fig.3.
m F F F F
A1F 1l K1 f C1 f TK1 f TC1 f
mA1r 1r FK1r FK1r FTK1r FTC1r
m F F F F
A2l 2l K 2l C 2l TK2l TC2l
m F F F F
2r 2r K 2r C 2r TK2r TC2r
FC1r FK2r M Z [F F ] [F F ]
2r B Ke1 Ce1 Ke2 Ce2
r
Z mA2r [FKe3 FCe3 ] [FKe4 FCe4 ] FK1l FC1l FK1r FC1r
Ze q2r FK2l
Ib1 Ib2 FC2l F F F F
FTK2r K 2l C 2l K 2r C 2r
FTC2r
T 2l
A2l I a F F a F F b F F
MIe3 Ie4 m Y K1l C1l K1r C1r K 2l C 2l
FI
FCe1 FKe1 bF F x .[F F ] x .[F F ]
FeI FTK2l K 2r C 2r 1 Ke1 Ce1 2 Ke2 Ce2
e FKe3 Ye FTC2l
q 2l
x1[FKe3 FCe3 ] x2[FKe4 FCe4 ]
FCe3 e
Xe FCe4 FKe4 Y B f
I X FK1l FC1l FK1r FC1r
1r FC1r 2
FK1r X
B
r F F F F
V mA1r 2 K 2l C1l K 2l C 2r
FC1l F b
K1l B
q FTC1r e1 F F F F
1r FTK1r Ke1 Ce1 Ke3 Ce3
mA1l 1l 2
L B
e2 F F F F
F FTK1l Ke2 Ce2 Ke4 Ce4
TC1l q a 2
1l i 4 i 4
B M Z F F
f e e Kei Cei
i 1 i 1
L L
I e1 .[F F ] e2 .[F F ]
eY 1 2 Ke1 Ce1 2 Ke3 Ce3
L L
e1 e2 (1)
FKe2 FCe2 [FKe4 FCe4 ]
2 2
B
Fig 3. Diagram of forces and torques e1
IeX 1 .[FKe3 FCe3 FKe1 FCe1 ]
2
B
e2
.[FKe4 FCe4 FKe2 FCe2 ]
2
26
Lê Văn Quỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 25 - 30
In Fig. 3, FKek and FCek are the spring forces of the tire, as shown in Fig.4(a). We are
and the damping forces of the engine mount known that when vehicle moves on the
system; FTKij and FTCij are the spring forces roughness road, the wheel’s motion in the
vertical direction could be described in two
and the damping forces of tires; FKij and FCij
are the spring forces and the damping forces stages: compression processes (static
compression and dynamic compression) and
of the suspension systems; FeI, FbI and MeI1,
rebounded processes (rebounded processes
M , M M are forces and moments of
eI2 bI1, bI2 and wheel left-off leaving processes). As is
inertia about X/Y-axis of engine and
shown in Fig.4(b) and Fig.4(c).
automotive body.
The radial spring force of the front right
The general dynamic differential equation for
wheel could be determined by the following
the typical four-wheel vehicle is given by formula:
Eq.1.
KT1r .(q1r 1r )
A difficulty in establishing the dynamic FTK1r
equations of automotive system is to find the 0
(M m ).g
nonlinear properties for suspension systems when[q ( 1r A1r )] 0
1r r1 K (5)
and tires which always appear two types of T1r
(M m ).g
the nonlinear (nonlinear physics and when[q ( 1r A1r )] 0
1r 1r K
nonlinear geometry), when vehicle moves on T1r
road surfaces. Both nonlinear geometry and The radial damping force of the front right
nonlinear physics are considered in this study wheel is determined by the following
and these nonlinear factor could be described formula:
(M m ).g
by the nonlinear mathematic function and the C q 1r A1r
T1r 1r 1r when[q1r (1r )] 0
K (6)
independent module-based programming. T1r
FTC1r (M m ).g
Then, there will be no difficulty in finding when[q ( 1r A1r )] 0
0 1r 1r K
the solution for that. T1r
For suspension system, the spring forces of
Meanwhile, the dynamic reaction force of the
the suspension systems could be determined front right wheel in vertical direction is
by the following formula: defined as follows:
FKij Kij Z ij ij (2) FT1r=FTK1r+FTC1r (7)
The damping forces of the suspension Eq.(4) and Eq.(7) are very important in
systems could be determined by the creating subsystems for simulating which
following formula: will be presented in the following paragraph.
C .( Z ) when ( Z ) 0.3
sc ij ij ij ij ij Road surface roughness
(3)
Clcij .(ij Z ij ) when 0.3 (ij Z ij ) 0 Road surface roughness plays an important
F
Cij
C . ( Z ij ) when 0 ( Z ij ) 0.3 role in evaluating vehcle ride comfort. In this
srij ij ij
study, the random excitation of road surface
Clrij . (ij Z ij ) when ( ij Z ij ) 0.3
roughness is selected the road surface
Meanwhile, the dynamic reaction
forces of the suspension systems in vertical highway1 in Hanoi-Lang Son section which
direction is defined as follows: is measured by equipment laser ARRB
Fij =FKij+FCij (4) Profiler[8]. The measuring results are
For tire, a quarter of automotive model is processed by Matlab 7.0 software and the
selected for anlyzing the nonlinear properties processing results are shown in Fig.5.
27
Lê Văn Quỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 25 - 30
z1r
F =K T1r (q - ) +C T1r (q - )
M1r 1r 1r 1r 1r 1r
K1r C1r wheel v
F =0
1r 1r
0.03
mA1r (m + M1r )g
1r q1(m)
CT1r q2(m)
KT1r 0.02
q1r F1r+(m 1r + M1r )g
Road surface roughness
a, b, 0.01
FTK1r 0
(m + M )g/K
1r 1r 1r K 1r=tg 1r
Tyre deflection -0.01
f 1r,st q 1r
1r 1r
(m + M )g Height roughness of road (m)
Left-off 1r 1r -0.02
process
Compression process
-0.03
Rebounded process 0 10 20 30 40 50
c, Time(s)
Fig. 4 Road-wheel-vehicle compled system. (a)
Quarter of automotive vibration model; (b)Wheel Fig 5. Random function of road surface
moving on road;
(c) elastic properties of radial tire
Table 1. Comfort levels related to aw threshold values
aWZ values Comfort level aWZ values Comfort level
Less than 0.315 m.s-2 Comfortable 0.8 m.s-2 to 1.6 m.s-2 Uncomfortable
0.315m.s-2 to 0.63m.s-2 A little uncomfortable 1.25 m.s-2 to 2.5 m.s-2 Very uncomfortable
0.5m.s-2 to 1 m.s-2 Fairly uncomfortable Greater than 2 m.s-2 Extremely
uncomfortable
INTERNATIONAL STANDARD ISO 2631 SIMULATION AND ANALYSIS RESULTS
The most widely used international standard In order to solve the nonlinear differential
for whole-body vibration (WBV) is ISO equations which presented in section 2 for
2631-1:1997E. This standard defines the evaluating influence of the parameters of
methods to quantify WBV in relation to engine mounting system on automotive ride
human comfort and health, perception and comfort, Matlab-Simulink software is used to
motion sickness. The standard has given two simulate with a specific set of parameters of a
methods for evaluation human body comfort 8-seat minibus "MEFA5-Lavi-304"
and health. In this study is selected a methods manufactured in Vietnam[2], the diagram of
for evaluation human body comfort, vibration simulation is shown in Fig. 6.
evaluation based on the basic evaluation
Simulations are carried out under the
method always includes measurements of the
weighted root-mean-square (r.m.s) conditions of the different road surfaces,
acceleration dened by: vehicle speeds and structural parameters of
the vehicle to acquire the impact factors, For
T 1/ 2
1 2 (8) example, the simulation results of the vertical
aw aw (t)dt
T
0 acceleration of automotive body when three
vertical damping values of engine mounting
where, aw(t) is the weighted acceleration
(translational and rotational) as a function of system conditions of 0Cek, 0.5Cek, 1Cek are
time, m/s2; T is the duration of the applied and the vehicle moves on the road
measurement, s. surface highway1 in Hanoi-Lang Son section
condition at v=80km/h (where Cek is used to
In this way, awz, aw and aw values can be
calculated from formula Eq.(8) and the r.m.s. designate the vertical damping values of
value of the vertical acceleration in vehicle engine mounting system[2]) which is shown
would be compared with the values in Tab 1, in Fig.7. From Fig.7 shows that the vertical
for indications of likely reactions to various acceleration of automotive body (az) values
magnitudes of overall vibration in the public increase while Cek values reduce which makes
transport. the automotive ride comfort bad.
28
Lê Văn Quỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 25 - 30
the stiffness conditions of Ce = [0.8÷2.6]xCek
Body
values and the damping conditions of Ke=[1
1.5]xKek values have been studied, where Cek
Front Suspn Engine Rear Suspn
and Kek is used to designate the stiffness and
damping coefficients of engine mounting
Front axle
Rear axle
system shown in reference[2]. Effects of the
Engine Suspn1 Engine Suspn4 Engine Suspn2 Engine Suspn3
Front tyre Rear tyre damping coefficients of the engine mount
Fornt Road Rear Road
system are shown in Fig.9. The awz value
Fig 6. Simulation diagram decreases as the engine mounting system
1
1C
ek stiffness increases which makes the
0.5C
0.5 ek automotive ride comfort good. When the
) 0C
ek
-2 damping coefficient increases from 0.8Cek to
0
/(m/s
z 2.4Cek, the awz value decreases by 1.4 times.
a
-0.5
1
1.0C
-1 ek
0 10 20 30 40 50 0.8 1.5C
Time/s ) ek
-2 0.6
Fig7. az when the damping coefficients of engine
mount system change /(m.s 0.4
wz
a
Effects of the stiffness coefficients of the 0.2
engine mount system 0
0 0.5 1 1.5 2 xK
K /(N.m) ek
The stiffness coefficients of the engine mount k
system are important factor that influence the
Fig 8. Effects of stiffness
automotive ride comfort. To analyze its effect
on awz, aw and aw values, the stiffness 0.8
1.5K
ek
conditions of Ke = [0.8÷2]xKek values and the
) 0.7 1K
damping conditions of Ce=[ 0.5 1 1.5]xCek -2 ek
m.s 0.6
values have been studied when the vehicle /(
wz
moves on the road surface highway1 in a 0.5
Hanoi-Lang Son section condition at
0.4
xC
v=80km/h and , where Kek and Cek is used to 0.5 1 1.5 2 2.5 3 ek
C /(N.m.s-2)
designate the stiffness and damping e
coefficients of engine mounting system
shown in reference[2]. The effects of the Fig 9. Effects of damping
stiffness coefficients of the engine mount CONCLUSION
system are shown in Fig.8. The awz increases
as the engine mounting system stiffness The 3-D non-linear vibration model for 8-
increases which makes the automotive ride seat minibus "MEFA5-Lavi-304"
comfort bad. When the damping coefficient manufactured in Vietnam is developed for
simulating and analyzing the influence of the
increases from 0.2Cek to 1.6 Cek, the awz value
parameters of engine mounting system on
increases by 4.2 times. However, aw and aw
values increase as the Kek value decreases automotive ride comfort. The major
which is the direct cause of the growth of conclusions that can be drawn from the
pitch and roll vehicle vibration [10]. analysis results as follows:
Effects of the damping coefficients of the (i) The damping coefficient of engine mount
engine mount system system has the greatest influence on automotive
The damping coefficients of the engine mount ride comfort when engine operates at road
system are another important factor that surface conditions in Viet Nam.
influence the automotive ride comfort. To (ii) The combination of the stiffness and
analyze its effect on awz, aw and aw values, damping coefficients of engine mount system
29
Lê Văn Quỳnh và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 25 - 30
have implications for improving the vibration, Mechanical Systems and Signal
automotive ride comfort. Processing,Vol.20, pp.1400–1409.
5. Jun Lan (2004). Multi-Body Nonlinear Analysis
(iii) In order to optimize the structural for Engine Vibration Simulation, WCCM VI in
parameters of vehicle engine mount system, conjunction with APCOM’04, Sept. 5-10, 2004,
one can offer an engine mount system Beijing, China.
structure with intelligent control, and the 6. Jae-Yeol Park, Rajendra Singh (2008). Effect of
study results in the paper can therefore serve non-proportional damping on the torque roll axis
as a basis for designing the control-intelligent decoupling of an engine mounting system. Journal
engine mount system through controlling the of Sound and Vibration, Vol.313. pp.841–857.
7. Le Van Quynh, Zhang Jianrun, L.D Dat, N.K
range of stiffness, damping and road Binh, L.V Tuan. Research on the Optimal
roughness. Parameters of Suspension Systems for Improved
Ride Comfort Movement of the Vehicle by
REFERENCES Vibration Model with 8 D.O.F(2010). Thai
1. Du Quoc Thinh(2008), Production of mini-car Nguyen, Viet Nam, the 10th National Conference
assembly between the two governments of China on Solid Mechanics, 2010, 615-621.
and Vietnam and the contents of this paper is also 8. Dao Manh Hung (2005). Effect of the
part of the study in the test project maximum load of vehicle on road surface,
"KC.05.DA.13". Ministerial-level Reports, Hanoi, Vietnam.
2. Nguyen Tan Chinh(2010), Study on the effect 9. ISO 2631-1; Mechanical vibration and shock-
Evanluation of human exposure to whole-body
of engine vibration on automobile’s ride comfort,
vibration, Part I: General requirements, The
Master thesis, Tnu.edu.vn.
International Organization for Standardization.
3.Chang Yong Song(2010). Design Optimization
10. Le Van Quynh, Zhang Jianrun, Liu Xiaobo,
and Development of Vibration Analysis Program Wang Yuan, Nguyen Van Liem(2013). Influence
for Engine Mount System, of heavy truck dynamic parameters on ride
comfort using 3D dynamic model, Journal of
4. Zhang Junhong, Han Jun (2006). CAE process Southeast University(Natural Science Edition),
to simulate and optimise engine noise and vol.43 (4), pp. 763-770.
TÓM TẮT
NGHIÊN CỨU ẢNH HƯỞNG HỆ THỐNG ĐỆM ĐỘNG CƠ
ĐẾN ĐỘ ÊM DỊU CHUYỂN ĐỘNG CỦA Ô TÔ
Lê Văn Quỳnh*, Hoàng Anh Tấn, Nguyễn Khắc Minh
Trường Đại học Kỹ thuật Công nghiệp - ĐH Thái Nguyên
Ngày nay độ êm dịu chuyển động của ô tô là một trọng chỉ tiêu quan trọng nhất của ô tô, vì vậy
nghiên cứu độ êm dịu càng ngày càng trở nên quan trọng. Mục tiêu chính nghiên cứu này là đánh
giá ảnh hưởng của thông số hệ thống đệm động cơ đến độ êm dịu của ô tô. Để đạt được mục đích
đó, một mô hình dao động phi tuyến không gian của ô tô với 10 bậc tự do được thiết lập và phần
mềm Matlab/Simulink được sử dụng để mô phỏng và tính toán các hệ số ảnh hưởng. Các thông số
của hệ thống đệm động cơ như độ cứng và hệ số cản lần lượt được phân tích dựa vào tiêu chuẩn
Quốc tế ISO 2631-1(1997-E) về đánh giá ảnh hưởng của dao động và tiếng ồn đến sức khỏe con
người. Kết quả nghiên cứu chỉ ra rằng hệ số cản của đệm cách dao động động cơ có ảnh hưởng rất
lớn đến độ êm dịu khi xe hoạt động trong điều kiện mặt đường quốc lộ Việt Nam. Ngoài ra, kết
quả nghiên cứu cung cấp một cơ sở lý thuyết để thiết kế hệ thống đệm bán tích cực cho động cơ
đốt trong.
Từ khóa: Hệ thống đệm động cơ, mô hình dao động, độ cứng, hệ số cản, độ êm dịu
Ngày nhận bài:20/6/2015; Ngày phản biện:06/7/2015; Ngày duyệt đăng: 30/7/2015
Phản biện khoa học: PGS.TS Vũ Ngọc Pi - Trường Đại học Kỹ thuật Công nghiệp - ĐHTN
* Tel: 0943 141653, Email: lequynhdl@yahoo.com
30
Các file đính kèm theo tài liệu này:
- influence_of_the_engine_mounting_system_on_the_automotive_ri.pdf