Computer aided cam design of roller-follower cam mechanism considering kinematic and dynamic requirements
Bài báo này trình bày một phương pháp mới, sử dụng phần Matlab và Inventor để thiết kế cơ cấu
Cam cần đẩy đáy con lăn. Trong đó, các giá trị kích thước cam và ứng suất tiếp xúc tối thiểu được
xác định bằng việc điều khiển các thông số thiết kế như bán kính vòng cơ sở, bề rộng của cam và
độ lệch tâm. Trong toàn bộ quá trình thiết kế, các ràng bộc về góc áp lực và ứng suất tiếp súc sẽ
được đưa vào quá trình tính toán và được xem như các điều kiện biên. Phương pháp phần tử hữu
hạn được sử dụng để mô phỏng sự phân bố ứng suất tiếp xúc trên bề mặt cam. Một ví dụ thiết kế
cụ thể đã được tiến hành để chứng minh được khả năng áp dụng vào thực tế của của cách tiếp cận
mới này
6 trang |
Chia sẻ: linhmy2pp | Lượt xem: 229 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Computer aided cam design of roller-follower cam mechanism considering kinematic and dynamic requirements, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trần Minh Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 125 - 130
COMPUTER AIDED CAM DESIGN
OF ROLLER-FOLLOWER CAM MECHANISM CONSIDERING
KINEMATIC AND DYNAMIC REQUIREMENTS
Tran Minh Quang*, Nguyen Quang Hung
College of Technology - TNU
SUMMARY
In this paper, a new method to design cam mechanisms with translating roller follower using
Matlab and Inventor software is presented. The minimization of the cam size and the contact stress
can be determined by controlling design parameters, such as the cam base circle radius, the
follower face width and the follower offset. During the design procedure, a number of constraints
regarding the pressure angle and the contact stress are taken into account. The finite element
aproach is used to perform the analysis. A specific design case has been done to prove the practical
applicability of this new approach.
Keywords: Cam profile, Cam design, Synthesis, Cam follower-mechanism, FEA
INTRODUCTION* basic principle of designing a cam profile is
A cam may be defined as a machine element still used to determine the coordinates of
having a curved outline or a curved groove, points at the center of the follower, then
which, by its oscillation or rotation motion, coordinates of points at the cam profile.
gives a predetermined specified motion to NURBS is used to construct a smooth curve
another element called the follower. Cam from these separate points. Once the function
mechanism with roller follower is used of cam profile is absolutely constructed by
widely in many classes of machines because using NURBS curve, a MATLAB program
due to the cam and follower it is possible to will be done to demonstrate the curve and to
obtain an unlimited variety of motions. control the kinematic conditions. The cam
However, when a motion of follower is given profile then can be exported into a CAD
arbitrarily, designers are sometime very software, such as Inventor. Finally, a
difficult to build the cam profile to satisfy modeling of cam is expressed to simulate the
kinematic and dynamic characteristics, such cam mechanism on the Inventor software.
as displacement, velocity, acceleration of Also a process of finite element analysis will
follower, pressure angle, and even contact be executed to control dynamic requirements.
stress. There are a number of documents Furthermore, the results of the design process
presenting about how to construct these using this method can be used to manufacture
profiles by using normal functions, such as cam on CNC machines. An example cam
Cycloid function, Sin functionetc[1.2]. design with translating roller follower from a
There are many new approaches executed to given displacement of follower has been done
improve smooth of the cam profile, but these to prove the practical applicability of this new
methods are still limited to kinematic approach.
requirements [3]. The paper presents a new CAM PROFILE DESIGN PRINCIPLE
method to design cam mechanisms with FROM A GIVEN DISPLACEMENT OF
translating roller follower concerning both THE FOLLOWER
kinematic and dynamic requirements, using The family of pitch profile can be determined
Matlab and Inventor software. Firstly, the from the parametric equation [1].
2 2 2
* F(x,y,) = (x - xp) + (y - yp) – rf = 0 (1)
Tel: 01697 165805, Email: minhquangclc06m@gmail.com
125
Trần Minh Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 125 - 130
3/2
Where (x , y ) are coordinates of points at the 2 2
p p ()r r s
center of the follower, as functions of the bf (5)
p 2
22
variable ; rf is radius of roller. (rb r f ) s 2 v a ( r b r f ) s
xp = (k+s)sin + e.cos Where: a is acceleration; of the follower
3) The offset e must satisfy the constraints:
yp = (k+s)sin - e.sin ;
0< e < s.
k() r r22 e (2)
bf 4) The contact stress of any point at the cam
k is the distance parallel to the direction of curve is always smaller than permitted contact
motion between center of the Cam and center stress for the cam: σmax ≤ [σ].
of the follower. CCAM PROFILE SMOOTHING BY USING
The coordinates of points at the cam profile NURBS CURVESAM PROFILE
can be calculated with the following SMOOTHING BY USING NURBS CURVES
equations [2]. In the section, NURBS curve is used to
1/2 construct complex and smooth Cam profile
22
dyp dx p dy p with many constraints about kinematics,
x x r ;
pfd d d dynamics, such as displacement, velocity,
acceleration, jerk of follower and pressure
dxp
angle of the cam. NURBS is a flexible
d (3) function used widely on applications of CAD
y ypp x x
dy p to construct complex curves [4.5]. While most
d basic curves, such as the circle, are not
represented by B-spline curves and other
During the synthesis procedure the following
parametric polynomial curves [5]. The
functional constraints are imposed:
NURBS can be defined by generalizing B-
1) The maximum value of the pressure angle spline curve of degree p:
must be smaller than the maximum permitted: h
ww
α ≤ [α]. The lower the value of pressure C()() u Ni, p u P i
angle, the best the transmitted force will be i0
wx
transformed into the motion of the follower. If ii
h wy
the pressure angle is too high, the follower ii
Nuip, ( ) ; (0 u 1) (6)
sliding or friction will be increased. i0 wz
ii
The pressure angle can be calculated by
wi
[1.3]: w
ve Where: Pi = (wixi, wiyi, wizi) are control
tg
22 (4) points; i = 0,1,2, h, (h+1) are number of
s() rb rf e
control points, Ni,p(u) are B-spline basis
Where: s is displacement of the follower, v is functions of degree p, wi is weights, u are knots.
velocity of the follower, r is the base circle; e
b
U 0,...,0,u ,...,u ,1,...,1 (7)
is eccentricity. p1 e p1
p1 p1
2) The roller follower radius rf is always
smaller than smallest absolute value of local is knot vector
radius of curvature |1/ρ|< 1/rf, that keep the
uu uu
contact between the cam and roller follower. N( u )i N ( u )ip1 N ( u ); N ( u )
i, pu u i , p 1 u u i 1, p 1 i ,0
If we disregard for existence of pressure i p i i p 11 i (8)
angle, the minimum cam size can be
1 ui1uui
determined from radius of curvature for roller
0 u u u
follower [1.3]. i1i
126
Trần Minh Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 125 - 130
h Where: t is parameter of initial data’s point i
N() u w P i
i, p i i h and can be calculated by the chord length
i0 (9)
Ri,, p( u )h C ( u ) R i p ( u ) P i
i0 method: t0 =0; tn =1.
Ni, p() u w i
i0 FINITE ELEMENT ANALYSIS PROCEDURE
Ri,p(u) are called B-spline basic Rational Finite element method is one of the most
functions. accepted and widely used tools for the solution
Suppose there is a data set of (n+1) data of linear and non linear partial differential
{D0(x0, y0),, Dn(xn,yn)}, An NURBS curve equations which arises during the mathematical
of degree p is constructed from the data as modeling of various processes [6].
using approximate method. It always get Once the function of cam profile is absolutely
through the beginning point and the ending constructed by using NURBS curve, a
point, therefore the sum of the squared errors
MATLAB program has been done to
between the point of initial data and its
demonstrate the curve and to test the
corresponding point at the NURBS curve can
be detected [3]: kinematic conditions. The cam profile then
can be exported into a CAD software, such as
f f( P , P ,.., P , w , w ,..., w )
0 1hh 0 1 Inventor. Finally, a modeling of cam is
h 2
N() t w P expressed to simulate the cam mechanism.
n j, p i j j (10)
j0 Also a process of finite element analysis will
h Di
i0 be executed. The cam design flowchart was
Nj, p() t i w j
j0 applied in the paper as shown in Fig.1.
127
Trần Minh Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 125 - 130
Motion of follower of the variable cam angle
14 follower, the solid model of the same is
S input
12 essential. Figure 5 shows a solid model of
roller follower. The accuracy of the FEM
10
depends on the density of the mesh used in
8 the analysis; the outer surface of cam loaded
6 by the follower so that to obtain the correct in
4
Displacement Displacement S(mm) the region of high stress.
2 The results of finite element analysis, as
0
0 50 100 150 200 250 300 350 shown in Fig.6, indicate that the maximum
Cam angle(deg) contact stress, according to Von-mises Stress,
Permitted max. pressure angle is 25deg
Cam base radius range from 60 to 120mm at surface of cam is 6.4MPa with a pressure
Permitted max. contact stress is 1500N/mm2 load 100N in rise cycle at angle of 19.5º,
Fig.2. Kinematic and dynamic requirements respectively. It absolutely satisfies the given
RESULTS AND DISCUSSION dynamic requirements.
In this section, an example cam design is Cam profile
80
exhibited with translating roller follower from Pitch curve
60
Cam curve
a given follower displacement S() as shown 40
in Fig.2. 20
0
The input parameters are set: rb = 80mm; e = -20
20mm and rf = 15mm. The NURBS curve of -40
degree p=3, i=90points and h=80. The cam -60
-80
profile and pressure angle are shown as in -100
Fig.3. The results indicate that the maximum -100 -50 0 50 100
max Pressure angle of cam angle
error f80 =0.0587. The pressure angles 12.2
range from 4.75deg [min] to 12.15deg [max], 12
the maximum radius of curvature is 24.03 11.8
mm. All of these results absolutely satisfy the 11.6
kinematic requirements. 11.4
11.2
Considering kinematic requirements the
Pressure Pressure angle(deg) 11
displacement, velocity and acceleration 10.8
of the follower are determined as shown in
0 50 100 150 200 250 300 350
Figure 4. Cam angle(deg)
To perform finite element analysis of roller Fig.3. Cam profile and pressure angle of the cam
15 0.6
0.4
10
0.2
S(mm) 0
5
velocity velocity (m/s) -0.2
0 -0.4
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Cam angle (deg)
Cam angle (deg)
30 200
20
100
)
)
2
10 3
(m/s 0
0
acceleration acceleration
jerk (m/s
-10 -100
-20 -200
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Cam angle (deg)
Cam angle (deg)
Fig.4. The follower motion diagrams
128
Trần Minh Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 125 - 130
In this approach, the contact stress
distribution along the contact between the
follower and the cam edge which give good
agreement with the numerical analysis using
F.E.M have been investigated. The results
show some advantage in solving non-linear
programming for designing cam mechanisms
with translating roller follower.
The entire data of the design process can be
used for manufacturing process on CNC
machines.
REFERENCES
Fig.5. 3D model of the cam 1. Robert L. Norton, Design of Machinery,
McGraw-Hill International Editions, Singapore,
CONCLUSIONS 1992.
For design cam mechanisms with translating 2. Chen, F. Y., Mechanics and Design of Cam
roller follower using Matlab and Inventor Mechanisms, Pergamon, New York, 1982.
software have been studied in this paper 3. Vũ Thị Liên, Trần Minh Quang, Cam Profile
Design of Cam Roller-Follower Cam Mechanism
taking in the consideration the kinematic and
from A Given Displacement of The Follower
dynamic requirements for solving the
Using NURBS Curve.
NURBS curve that proposed to satisfy the
4. Piegl, L.A. and Tiller, W., Computing offsets of
curvature and minimum cam size.
NURBS curves and surfaces. Computer-Aided
Design. v31. 147-156.
5. Vu Thi Lien, (2010) Optimization of NURBS
Fitting with Simulated Annealing Method for
Non-Symmetric Objects, Master’s thesis,
Department of Mechanical Engineering, National
Taiwan University of Science and Technology.
6. Fathi Al-Shamma, Faiz F. Mustafa, Sahar M.
Saliman, An Optimum Design of Cam
Mechanisms with Roller Follower for Combined
Effect of Impact and High Contact Loads, Al-
Khwarizmi Engineering Journal, Vol. 6, No. 4,
Fig.6. Contact stress at cam surface PP 62 - 71 (2010)
129
Trần Minh Quang và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 139(09): 125 - 130
TÓM TẮT
THIẾT KẾ CƠ CẤU CAM CẦN ĐẨY ĐÁY CON LĂN VỚI SỰ TRỢ GIÚP
CỦA MÁY TÍNH KHI KỂ ĐẾN CÁC YÊU CẦU
VỀ ĐỘNG HỌC VÀ ĐỘNG LỰC HỌC
Trần Minh Quang*, Nguyễn Quang Hưng
Trường Đại học Kỹ thuật Công nghiệp - ĐH Thái Nguyên
Bài báo này trình bày một phương pháp mới, sử dụng phần Matlab và Inventor để thiết kế cơ cấu
Cam cần đẩy đáy con lăn. Trong đó, các giá trị kích thước cam và ứng suất tiếp xúc tối thiểu được
xác định bằng việc điều khiển các thông số thiết kế như bán kính vòng cơ sở, bề rộng của cam và
độ lệch tâm. Trong toàn bộ quá trình thiết kế, các ràng bộc về góc áp lực và ứng suất tiếp súc sẽ
được đưa vào quá trình tính toán và được xem như các điều kiện biên. Phương pháp phần tử hữu
hạn được sử dụng để mô phỏng sự phân bố ứng suất tiếp xúc trên bề mặt cam. Một ví dụ thiết kế
cụ thể đã được tiến hành để chứng minh được khả năng áp dụng vào thực tế của của cách tiếp cận
mới này.
Từ khóa: Biên dạng cam, Thiết kế cam, Tổng hợp, Cam cần đẩy, Phân tích phần tử hữu hạn
Ngày nhận bài:20/6/2015; Ngày phản biện:06/7/2015; Ngày duyệt đăng: 30/7/2015
Phản biện khoa học: PGS.TS Vũ Ngọc Pi - Trường Đại học Kỹ thuật Công nghiệp - ĐHTN
* Tel: 01697 165805, Email: minhquangclc06m@gmail.com
130
Các file đính kèm theo tài liệu này:
- computer_aided_cam_design_of_roller_follower_cam_mechanism_c.pdf