Bài giảng Engineering electromagnetic - Chapter XIII: Plane Wave Reflection & Dispersion - Nguyễn Công Phương
Plane Wave Reflection at Oblique Incidence Angles (8)
reflected p ( 0.144) 0.021 2
incident
transmitted 1 1 ( 0.144) 0.979 p
incident
A uniform plane wave is incident from air onto glass at an angle of 30o from the
normal. Find the fraction of the incident power that is reflected and transmitted for
(a) p – polarization, & (b) s – polarization. Given glass refractive index n2 = 1.45
45 trang |
Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 204 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter XIII: Plane Wave Reflection & Dispersion - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Plane Wave Reflection & Dispersion
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 2
Plane Wave Reflection & Dispersion
1. Reflection of Uniform Plane Waves at Normal
Incidence
2. Standing Wave Ratio
3. Wave Reflection from Multiple Interfaces
4. Plane Wave Propagation in General Directions
5. Plane Wave Reflection at Oblique Incidence Angles
6. Wave Propagation in Dispersive Media
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 3
Reflection of Uniform Plane Waves at Normal Incidence (1)
+ + −α z
EztEe( , )=1 cos(ω t − β z ) Region 1 x Region 2
x1 x 10 1 µ ε′ ε ′′ µ ε′ ε ′′
+ + − 1, 1 , 2 2, 2 , 2
= jk1 z
Exs1 E x 10 e
+ +
+1 + − E, H
= jk1 z 1 1
Hys1 E x 10 e
η Incident wave + +
1 E2, H 2
+ + −
= jk2 z
Exs2 E x 20 e − − Transmitted wave
E1, H 1
+1 + − jk z
H= E e 2 Reflected wave
ys2η x 20
2 z
+= + →+ = + z = 0
Boundary c.: Exs1 E xs 2 Ex10 E x 20
z=0 z = 0
+ + →η = η (unreasonable)
+ + E E 1 2
Boundary c.: H= H →x10 = x 20
xs1= xs 2 = η η − −
z0 z 0 = jk1 z
1 2 Exs1 E x 10 e
−1 − jk z
H= − E e 1
ys1η x 10
1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 4
Reflection of Uniform Plane Waves at Normal Incidence (2)
= = Region 1 x Region 2
Exs1 E xs 2 ( z 0) + − +
→E + E = E µ, ε′ , ε ′′ µ, ε′ , ε ′′
→+=+ − + = x10 x 10 x 20 1 1 2 2 2 2
Exs1 E xs 1 E xs 2 ( z 0)
+ +
= = + − + E, H
Hys1 H ys 2 ( z 0) E E E 1 1
→x10 − x 10 = x 20 Incident wave + +
→+=+ − + = η η η E2, H 2
Hys1 H ys 1 H ys 2 ( z 0) 1 1 2
− −
E, H Transmitted wave
+−η + η − 1 1
→+=EE2 E − 2 E
xx10 10η x 10 η x 10 Reflected wave
1 1
z
− + η− η z = 0
→E = E 2 1
x10 x 10 η+ η
2 1
−
E η− η
→Γ=x10 = 2 1 + η
+ η+ η →=τ Ex20 =2 2 =+Γ
Ex10 2 1 + 1
E η+ η
++ − = + x10 1 2
Ex10 E x 10 E x 20
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 5
Reflection of Uniform Plane Waves at Normal Incidence (3)
− η− η + η
Γ =Ex10 = 2 1 τ =Ex20 =2 2 =+Γ Region 1 x Region 2
+ + 1 µ ε′ ε ′′ µ ε′ ε ′′
η+ η η+ η 1, 1 , 2 2, 2 , 2
Ex10 2 1 Ex10 1 2
+ +
Region 1 is dielectric, region 2 is conductor: E1, H 1
Incident wave + +
jωµ + E, H
η =2 = 0 →τ = 0 →E = 0 2 2
2 σ+ ωε ' x20
2j 2 − − Transmitted wave
E1, H 1
Γ = − 1 →+ = − −
Ex10 E x 10 Reflected wave
+−+− β + β
=+=jz1 − jz 1 z
Exs1 E xs 1 E xs 1 Ee x 10 Ee x 10 z = 0
= + β
Dielectric: jk10 j 1
− β β + +
→=jz1 − jz 1 =− β
Exs1( e eE ) x 10 j 2sin( 110 zE ) x
→ = + β ω
EztEx1(,) 2 x 10 sin( 1 z )sin( t )
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 6
Reflection of Uniform Plane Waves at Normal Incidence (4)
− η− η + η
Γ =Ex10 = 2 1 τ =Ex20 =2 2 =+Γ Region 1 x Region 2
+ + 1 µ ε′ ε ′′ µ ε′ ε ′′
η+ η η+ η 1, 1 , 2 2, 2 , 2
Ex10 2 1 Ex10 1 2
+ +
Region 1 is dielectric, region 2 is conductor: E1, H 1
Incident wave + +
+
= β ω E2, H 2
EztEx1(,) 2 x 10 sin( 1 z )sin( t )
− − Transmitted wave
=→β = π =±± E1, H 1
Ex10 1 zmm ( 0, 1, 2,...)
Reflected wave
π λ
2 1 z
→zm =π →= zm z = 0
λ 2
1 x
Conductor
= − 3 λ = − λ = − 1 λ
z 1 z 1 z 1
2 2 z = 0 z
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 7
Reflection of Uniform Plane Waves at Normal Incidence (5)
− η− η + η
Γ =Ex10 = 2 1 τ =Ex20 =2 2 =+Γ Region 1 x Region 2
+ + 1 µ ε′ ε ′′ µ ε′ ε ′′
η+ η η+ η 1, 1 , 2 2, 2 , 2
Ex10 2 1 Ex10 1 2
+ +
Region 1 is dielectric, region 2 is conductor: E1, H 1
Incident wave + +
=+ + − E, H
Hys1 H ys 1 H ys 1 2 2
− − Transmitted wave
+ E1, H 1
+ E
H = xs 1
ys 1 η Reflected wave
1 z
− z = 0
− E
H = − xs 1
ys 1 η
1
+ +
Ex10 − jzβ jz β Ex10
→H =( e1 + e 1 ) →Hzt( , ) = 2 cos(β z )cos( ω t )
ys 1 η y1η 1
1 1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 8
Reflection of Uniform Plane Waves at Normal Incidence (6)
− η− η + η
Γ =Ex10 = 2 1 τ =Ex20 =2 2 =+Γ Region 1 x Region 2
+ + 1 µ ε′ ε ′′ µ ε′ ε ′′
η+ η η+ η 1, 1 , 2 2, 2 , 2
Ex10 2 1 Ex10 1 2
+ +
Region 1 is dielectric, region 2 is dielectric: E1, H 1
Incident wave + +
E2, H 2
η1 & η2 are positive real values,
− − Transmitted wave
α1 = α2 = 0 E1, H 1
Reflected wave
z
z = 0
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 9
Reflection of Uniform Plane Waves at Normal Incidence (7)
Ex.
+ =
Given η1 = 100 Ω, η2 = 300 ΩE, x10 100 V/ m . Find the incident, reflected,
and transmitted waves.
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 10
Reflection of Uniform Plane Waves at Normal Incidence (8)
+
+1 ++ 1 + Eˆ Region 2
S=Re[ EHˆ ] = Re[ E x10 ] Region 1 x
1,av xy 1010 x 10 η µ ε′ ε ′′ µ ε′ ε ′′
2 2 ˆ1 1, 1 , 2 2, 2 , 2
1 1 + 2
= Re E + +
η x10 E1, H 1
2 ˆ1
Γˆ ˆ + Incident wave + +
−=−1 −−ˆ =Γ 1 + Ex10 E2, H 2
S1,avRe[ EH xy 1010 ] Re[ E x 10 ]
η − −
2 2 ˆ1 E, H Transmitted wave
2 1 1
=1 1 + Γ 2
Re Ex10 Reflected wave
2 ηˆ
1 z
→− = Γ 2 + z = 0
S1,av S 1, av
+
+++1 1 +τˆEˆ 11 + 2
SEH=Re[ˆ ] = Re[τ Ex10 ] = Re E τ 2
2,avxy 2020 x 10η η x 10
2 2ˆ2 2 ˆ 2
2
Re[1/ηˆ ] + ηηη+ ˆ + +2 +
=2τ2S = 122 τ 2 S →S =(1 −Γ ) S
η1,av ηηη+ 1, av 2,av 1, av
Re[1/ˆ1 ] 211 ˆ
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 11
Plane Wave Reflection & Dispersion
1. Reflection of Uniform Plane Waves at Normal
Incidence
2. Standing Wave Ratio
3. Wave Reflection from Multiple Interfaces
4. Plane Wave Propagation in General Directions
5. Plane Wave Reflection at Oblique Incidence Angles
6. Wave Propagation in Dispersive Media
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 12
Standing Wave Ratio (1)
+−+− jzβ + jz β x Region 2
E=+= EEEe1 +Γ Ee 1 Dielectric
xs1 x 1 x 1 x 10 x 10 η η
1 2
η− η ϕ
Γ=2 1 =Γ e j
η+ η + +
2 1 E1, H 1
−jzβ jz( β + ϕ ) +
→ =1 +Γ 1 Incident wave + +
Eexs1( e) E x 10 E2, H 2
= + Γ + − − Transmitted wave
Exs1,max(1 ) E x 10 E1, H 1
→−β = β ++ ϕ π =±± Reflected wave
1z 1 z2 mm ( 0, 1, 2,...)
1 z
→z =−(ϕ + 2 m π ) z = 0
max β
2 1
= − Γ +
Exs1,min(1 ) E x 10
1
→−βzz = β +++ ϕπ2 mm π ( =±± 0, 1, 2,...) →z =−[ϕ + (2 m + 1) π ]
1 1 min β
2 1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 13
Standing Wave Ratio (2)
−jzβ jz( β + ϕ ) + 1 1
=1 + Γ 1 z= −(ϕ + 2 m π ) z=−[ϕ + (2 m + 1) π ]
Eexs1( e) E x 10 max β min β
2 1 2 1
E
λ / 2 xs 1
+ Γ +
(1 ) Ex10
− Γ +
(1 ) Ex10
z
ϕ+ π ϕ+ π ϕ+ π ϕ
− 6 − 4 − 2
2β ϕ+ π 2β ϕ+ π 2β ϕ+ π 2β
− 5 − 3 −
2β 2β 2β
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 14
Standing Wave Ratio (3)
−jzβ jz( β + ϕ ) +
=1 + Γ 1
Eexs1( e) E x 10
+ − ϕ− jzβ ϕ jz β ϕ
=j/21 + Γ j /2 1 j /2
Eeex10 ( eee)
+ − ϕ− jzβ ϕ jz β ϕ
=j/21 + Γ j /2 1 j /2
Eeex10 ( eee)
+−ϕ−β +− ϕ − β
+Γj/2jz1 −Γ j /2 jz1
()Eeex10() Eee x 10
+−jzβ + − ϕ − jz β ϕ jz β ϕ
= −Γ1 +Γj/21 + j /2 1 j /2
Ex10(1 ) e E x 10 ( ee eee)
+− β + ϕ
= −Γj1 z +Γ j / 2 β + ϕ
Ex10(1) e 2 Ee x 10 cos( 1 z / 2)
→ =−Γ+ωβ −+Γ + βϕ + ωϕ +
Eztx1( , )( 1) E x 10 cos( tzE 1 ) 2 x 101 cos( z / 2)cos( t / 2)
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 15
Standing Wave Ratio (4)
=−Γ+ωβ −+Γ + βϕ + ωϕ +
Eztx1( , )( 1) E x 10 cos( tzE 1 ) 2 x 101 cos( z / 2)cos( t / 2)
= + Γ
Exs 1,max 1
= − Γ
Exs 1,min 1
E 1+ Γ
s =xs 1,max =
− Γ
Exs 1,min 1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 16
Plane Wave Reflection & Dispersion
1. Reflection of Uniform Plane Waves at Normal
Incidence
2. Standing Wave Ratio
3. Wave Reflection from Multiple Interfaces
4. Plane Wave Propagation in General Directions
5. Plane Wave Reflection at Oblique Incidence Angles
6. Wave Propagation in Dispersive Media
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 17
Wave Reflection from Multiple Interfaces (1) x
η η η
The steady – state has 5 waves: 1 2 3
• Incident wave in region 1
• Reflected wave in region 1 Incident energy
• Transmitted wave in region 3
ηin z
• 2 opposite waves in region 2 – l 0
+− β − β + −
=jz2 + jz 2 β = ω ε
Exsx220 Ee Ee x 20where 2 r 2 c,& Ex20 E x 20 are complex
+− β − β
=jz2 + jz 2
Hys2 He y 20 He y 20
η− η
Γ = 3 2
23 η+ η
3 2
−= Γ +
Ex20 23 E x 20 ⋮
+ − +
+ E − EΓ E
H = x20 H =−x20 =− 23 x 20
y20 η y20 η η
2 2 2
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 18
Wave Reflection from Multiple Interfaces (2) x
+− β − β
=jz2 + jz 2 η η η
Exs2 Ee x 20 Ee x 20 1 2 3
+− β − β
=jz2 + jz 2
Hys2 He y 20 He y 20
+− β − β
jz2+ jz 2
η =Exs2 = Ee x 20 Ee x 20
Define w(z ) +− β − β Incident energy
jz2+ jz 2
H ys 2 Hey20 He y 20
+ + ηin z
− ++E − Γ E
E=Γ EH, =x20 , H =− 23 x 20 – l 0
x20 23 xy 20 20η y 20 η
2 2
− jzβ jz β
2+ Γ 2
→η = η e23 e
w(z ) 2 − β β
jz2− Γ jz 2
e23 e
η− η ϕ
Γ=3 2 ,ej =+ cosϕ j sin ϕ
23 η+ η
3 2
(ηη+ )(cos βzjz − sin βηη ) +− ( )(cos β zjz + sin β )
→η(z ) = η × 32 2 232 2 2
w 2 ηη+ β − βηη −− β + β
(32 )(cos 2zjz sin 232 )( )(cos 2 zjz sin 2 )
η β− η β
=η 3cos 2z j 2 sin 2 z
2 η β− η β
2cos 2z j 3 sin 2 z
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 19
Wave Reflection from Multiple Interfaces (3) x
η η
++ − = =− η1 2 3
Exs1 E xs 1 E xs 2 ( zl )
→+ + − = =−
Ex10 E x 10 Ezl xs 2 ( )
++ − = =− Incident energy
Hys1 H ys 1 H ys 2 ( zl )
ηin z
+ − = −
→Ex10 − E x 10 = Ezl xs 2 ( ) – l 0
η η η −
1 1 w(l )
− η− η
→=Γ=Ex10 in 1 η = η
+ , where in w =−
E η+ η z l η β+ η β
x10 in 1 →η = η 3cos 2l j 2 sin 2 l
ηcos βz− j η sin β z in 2 ηcos βl+ j η sin β l
η(z ) = η 3 2 2 2 2 2 3 2
w 2 η β− η β
2cos 2z j 3 sin 2 z
η= η
v 1: matched
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 20
Wave Reflection from Multiple Interfaces (4) x
η1 η2 η3
η= η
Assume: 3 1
β= π
2l m λ
→l = m 2 Incident energy
2π 2
β = η
2 λ v z
2 – l 0
η β+ η β
η= η 3cos 2l j 2 sin 2 l
in 2 η β+ η β
2cos 2l j 3 sin 2 l
→η = η
in 3
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 21
Wave Reflection from Multiple Interfaces (5) x
η≠ η η1 η2 η3
3 1
Assume: π
β l=(2 m − 1)
2 2 λ
→l =(2 m − 1) 2 Incident energy
2π 4
β = η
2 λ v z
2 – l 0
η β+ η β
η= η 3cos 2l j 2 sin 2 l
in 2 η β+ η β
2cos 2l j 3 sin 2 l
η2
→η = 2
in η →η = η η
3 2 1 3
η= η
Total transmission: v 1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 22
Wave Reflection from Multiple Interfaces (6)
Ex.
It is required to coat a glass surface with an appropriate dielectric layer to provide total
transmission from air to the glass at a wavelength of 570 nm. The glass has dielectric constant,
εr = 2.1. Find the required dielectric constant for the coating and its minimum thickness.
µ
η== η 0 =377 Ω
1 0 ε
0
µ µµ µ1 η 377
η ==0r = 0 == 1 =Ω260
3 ε εε εε ε
0r 0 r r 2.1
η= η η = × = Ω
Total transmission: 2 1 3 377 260 313
2
η η 377 2
η = 1 →=ε 1 = = 1.45
2 ε r2 η
r2 2 313
λ 570 λ 473
λ =1 = = 473 nm →==l 2 =118nm = 0.118 µ m
2 µ ε × 2
r2 r 2 1 1.45 4 4
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 23
Wave Reflection from Multiple Interfaces (7) x
η1 η2 η3 η4
η β+ η β
η= η 4cos 3lb j 3 sin 3 l b
in, b 3 η β+ η β
3cos 3lb j 4 sin 3 l b
Incident energy
η β+ ηβ
vb,cos 2l a j 22 sin l a
η= η ηin, a ηin, b z
in, a 2 ηβcosl+ j η sin β l
22a vb , 2 a – (la + lb) – lb 0
η− η la lb
Γ = in, a 1
η+ η
in, a 1
The reflected power fraction: |Γ|2
The fraction of the power transmitted into region 4: 1 – |Γ|2
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 24
Plane Wave Reflection & Dispersion
1. Reflection of Uniform Plane Waves at Normal
Incidence
2. Standing Wave Ratio
3. Wave Reflection from Multiple Interfaces
4. Plane Wave Propagation in General Directions
5. Plane Wave Reflection at Oblique Incidence Angles
6. Wave Propagation in Dispersive Media
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 25
Plane Wave Propagation in General Directions (1)
Phase: k.r z
λ v
= − jk.r p
EEs 0e
= +
kkxx a k zz a k
r=x a + z a kz
x z r (x, z)
→ = +
k.r kxx kz z
θ x
−jkx( + kz )
→ = x z
EEs 0e kx
λx
π π ω ω
θ = kz λ =2 = 2 = =
atan vp
k k 2+ 2 k 2+ 2
x kx k z kx k z
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 26
Plane Wave Propagation in General Directions (2)
Ex.
Given a 50 MHz uniform wave, it has electric field amplitude 10 V/m. The medium is
o
lossless, εr = ε’r= 9.0; µr = 1.0. The wave propagates in the x, y plane at a 30 angle to the
x axis, & is linearly polarized along z. Find the phasor expression of the electric field.
6
ω ε 2π × 50 × 10 9 −
k ===ω µε r = 3.14 m 1
c 3× 10 8
=o + o
k3.14cos30 ax 3.14sin30 a y
= +
rx ax y a y
−−jkx( + k y ) − +
=jk.r =x y = jxy(2.7 1.6 )
Es Ee0 Ee 0 10 e V/m
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 27
Plane Wave Reflection & Dispersion
1. Reflection of Uniform Plane Waves at Normal
Incidence
2. Standing Wave Ratio
3. Wave Reflection from Multiple Interfaces
4. Plane Wave Propagation in General Directions
5. Plane Wave Reflection at Oblique Incidence Angles
6. Wave Propagation in Dispersive Media
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 28
Plane Wave Reflection at Oblique Incidence Angles (1)
+ − + −
+ E E − + H H −
k1 10 10 k1 k1 10 10 k1
θ θ′ θ θ′
1 1 1 1
+ − + −
+ − +U U −
Ez10 Ez10 H H z10 Ez10 E
H10 10 E10 10
θ θ′ θ θ′
1 1 1 1
η η
1 z 1 z
η θ η θ
2 2 2 2
θ θ
2 E20 2 H20
H20 E20 U
Ez20 H z20
x k2 x k2
p – polarization, TM s – polarization, TE
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 29
Plane Wave Reflection at Oblique Incidence Angles (2)
+
+ + − − + + − jk .r
k E10 E10 k EE= e 1
1 θ′ 1 s1 10
θ 1 −
+1 − − − − jk .r
+ − = 1
Ez10 Ez10 H EE e
H10 10 s1 10
′ −
θ θ = jk2 .r
1 1 EEs2 20 e
η
1 z +
η θ k=k (cosθ a + sin θ a )
2 2 11 1x 1 z
−
θ E = −θ′ + θ ′
2 20 k11k ( cos 1 ax sin 1 a z )
H20 =θ + θ
Ez20 k22k (cos 2 ax sin 2 a z )
x k2 = +
rx ax z a z
p – polarization, TM
ω ε n ω ω ε n ω
k =r1 = 1 k =r2 = 2
1 c c 2 c c
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 30
Plane Wave Reflection at Oblique Incidence Angles (3)
+
+ + − − + + − jk .r
k E10 E10 k EE= e 1
1 θ′ 1 s1 10
θ 1 −
+1 − − − − jk .r
+ − = 1
Ez10 Ez10 H EE e
H10 10 s1 10
′ −
θ θ = jk2 .r
1 1 EEs2 20 e
η
1 z + +−jk+ .r + − jkxz( cosθ + sin θ )
η θ EEe=1 = Ecos θ e 1 1 1
2 2 zs1 z 10 10 1
− −−− − −θ' − θ '
θ E =jk1 .r = θ ' jkxz1( cos 1 sin 1 )
2 20 EEezs1 z 10 E 10cos 1 e
H − −θ + θ
20 E =jk2 .r = θ jk2( x cos 2 z sin 2 )
z20 EEezs2 z 20 E 20cos 2 e
+ −
x k2 + = =
EEEzs1 zs 1 zs 2 (at x 0)
p – polarization, TM
+−θ − − θ′ − θ
→θjk11 zsin + θ′ jk 11 z sin = θ jk 22 z sin
Ee10cos 1 Ee 10 cos 1 Ee 20 cos 2
θ′ = θ
→kzsinθ = kz sin θ′ = kz sin θ → 1 1
1 11 12 2 θ= θ →θ = θ
k1sin 1 k 2 sin 2 n1sin 12 n sin 2
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 31
Plane Wave Reflection at Oblique Incidence Angles (4)
+ + − −
k E E k θ′ = θ
1 10 θ′ 10 1 1 1
θ 1
+1 − θ= θ
+ − k1sin 12 k sin 2
Ez10 Ez10 H
H10 10 +−jk zsinθ − − jk z sin θ ′
θ11+ θ ′ 11 =
θ θ′ E10cos 1 e E 10 cos 1 e
1 1
η − θ
z = θ jk2 z sin 2
1 E20cos 2 e
η θ
2 2 →+θ + − θ = θ
θ E10cos 1 E 10 cos 1 E 20 cos 2
2 E20
++ − = =
H20 HHH10 10 20 (at x 0)
Ez20
k +θ − θ θ
x 2 →E10cos 1 − E 10 cos 1 = E 20 cos 2
η η η
p – polarization, TM 1p 1 p 2 p
η= η θη = η θ
where 1p 1cos 12 , p 2 cos 2
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 32
Plane Wave Reflection at Oblique Incidence Angles (5)
+ + − −
k E E k
1 10 θ′ 10 1
θ 1 + −
+1 − Ecosθ+ E cos θ = E cos θ
+ − 10 1 10 1 20 2
H Ez10 Ez10 H
10 10 + −
θ θ′ Ecosθ E cos θ E cos θ
1 1 10 1− 10 1 = 20 2
η η η η
1 z 1p 1 p 2 p
η θ
2 2
θ E
2 20 − η− η
E10 2p 1 p
H20 Γ = =
Ez20 p + η+ η
k E 2p 1 p
x 2 → 10
2η
p – polarization, TM τ =E20 = 2 p
p + η+ η
E10 2p 1 p
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 33
Plane Wave Reflection at Oblique Incidence Angles (6)
+ −
+ H H −
− k1 10 10 k1
θ θ′
Ey10 η− η 1 1
Γ = = 2s 1 s U + − U −
s + H Ez10
+ η+ η E z10 E10
E 2s 1 s 10
y10 θ θ′
1 1
E η η z
τ =y20 = 2 2s 1
s + η θ
E η+ η 2 2
y10 2s 1 s θ
2 H20
η E20 U
η = 1 H z20
1s θ k
cos 1 x 2
η s – polarization, TE
η = 2
2s θ
cos 2
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 34
Plane Wave Reflection at Oblique Incidence Angles (7)
Ex. 1
A uniform plane wave is incident from air onto glass at an angle of 30 o from the
normal. Find the fraction of the incident power that is reflected and transmitted for
(a) p – polarization, & (b) s – polarization. Given glass refractive index n2 = 1.45.
sin30 o
nsinθ= n sin θ →= θ asin = 20.2 o
1 12 2 2 1.45
η= η o =× =Ω
1p 1 cos30 377 0.866 326
µ µ µ µ
η =1 =r1 0 = 0
1 ε εε ε η
1r 10 0 →1 = ε η
η r2 1
µ µ µ µ 2 → = n
η =2 =r2 0 = 0 η 2
2 = ε 2
ε εε εε n2r 2 η 377
2r 20 r 20 →=η 1 = =260 Ω
2 n2 1.45
→=η η θ =o =Ω
2p 2cos 2 260cos20.2 244
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 35
Plane Wave Reflection at Oblique Incidence Angles (8)
Ex. 1
A uniform plane wave is incident from air onto glass at an angle of 30 o from the
normal. Find the fraction of the incident power that is reflected and transmitted for
(a) p – polarization, & (b) s – polarization. Given glass refractive index n2 = 1.45.
η=Ω η = Ω
1p326 , 2 p 244
η− η 244− 326
Γ=2p 1 p = =− 0.144
p η+ η +
2p 1 p 244 326
P 2
reflected =Γ =−2 =
p ( 0.144) 0.021
Pincident
Ptransmitted =−Γ2 =−−2 =
1p 1 (0.144) 0.979
Pincident
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 36
Plane Wave Reflection at Oblique Incidence Angles (9)
Ex. 1
A uniform plane wave is incident from air onto glass at an angle of 30 o from the
normal. Find the fraction of the incident power that is reflected and transmitted for
(a) p – polarization, & (b) s – polarization. Given glass refractive index n2 = 1.45.
η
1 377 + + − −
η = = =Ω435 k E10 E10 k
1s θ o 1 θ′ 1
cos 1 cos30 θ 1
+1 −
η + −
2 260 Ez10 Ez10 H
η = = =Ω277 H10 10
2s θ o
cos 2 cos20.2 θ θ′
1 1
η− η 277 − 435 η
Γ=2s 1 s = =− 0.222 1 z
s η+ η + η θ
2s 1 s 277 435 2 2
P θ E
reflected =Γ2 =−2 = 2 20
s ( 0.222) 0.049
Pincident H20
Ez20
Ptransmitted =−Γ2 =−−2 = k2
1s 1 (0.222) 0.951 x
Pincident p – polarization, TM
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 37
Plane Wave Reflection at Oblique Incidence Angles (10)
Total reflection: Γ2 =ΓΓ=ˆ 1
2
θ= − 2 θ n
cos2 1 sin 2 →θ = − 1 2 θ
cos2 1 sin 1
nsinθ= n sin θ n2
1 12 2 →η = j η
η= η θ 2p 2 p
2p 2cos 2
θ > n2
NÕu sin 1
n1
η= ηcos θ
1p 1 1 →η > 0
η > 1p
1 0
ηη− η − η
η− η j21pp 1 p j 2 p Z
→Γ=2p 1 p = =− =− →Γ Γˆ = 1
p η+ η ηη+ η + η ˆ p p
2p 1 p j21pp 1 p j 2 p Z
→θ ≥ n2 →θ ≥ θ = n2
If sin 1 then total reflection 1 c asin
n1 n1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 38
Plane Wave Reflection at Oblique Incidence Angles (11)
Ex. 2
Compute n1 so that total reflection occurs at the back
n1
surface. 45 o
n2 = 1
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 39
Plane Wave Reflection at Oblique Incidence Angles (12)
Total transmission: Γ = 0
Γ =
s 0
η− η →η = η
Γ = 2s 1 s 2s 1 s
s η+ η η
2s 1 s η = 1 η η
1s θ →2 = 1
cos 1 θ θ
η cos2 cos 1
η = 2 nsinθ= n sin θ
2s θ 1 12 2
cos 2
−1
2 1
n 2 −
→−η11 sin2 θη =− 1 sin 2 θ 2
2n 11 1
2
2 n
n1 2 2 →θ = θ = 2
Γ=→0η 1 − sin θη =− 1 sin θ sin1 sin B
p 2n 11 1 2+ 2
2 n1 n 2
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 40
Plane Wave Reflection at Oblique Incidence Angles (13)
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 41
Plane Wave Reflection & Dispersion
1. Reflection of Uniform Plane Waves at Normal
Incidence
2. Standing Wave Ratio
3. Wave Reflection from Multiple Interfaces
4. Plane Wave Propagation in General Directions
5. Plane Wave Reflection at Oblique Incidence Angles
6. Wave Propagation in Dispersive Media
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 42
Wave Propagation in Dispersive Media (1)
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 43
Wave Propagation in Dispersive Media (2)
ω ω
β() ω=k = ω µ ε ()() ω = n ω
0 c
ωb
−jzjtβ − ω − jzjt β − ω ω
=a a + b b 0
Ec, net ( ztEe , ) 0 ( e e e )
ωa
∆=ωω − ω = ω − ω
0a b 0
β
∆=ββ − β = β − β
0a b 0 βa β0 βb
− jβ z j ω t ∆β −∆ ω −∆ βω ∆
→ =0 0 jzjt + jzjt
Ec, net ( ztEe , ) 0 e( ee e e )
− β ω
=j0 z j 0 t ∆−∆ω β
2Eee0 cos( t z )
→ = = ∆−∆ω β ωβ −
Eztnet(,) Re[ E cnet,0 ]2 E cos( tt )cos( 00 tt )
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 44
Wave Propagation in Dispersive Media (3)
= ∆−∆ω β ωβ − ω
EztEnet ( , ) 20 cos( t t )cos( 0 tt 0 ) vp, sm = vg(ω0)
ωb
ω
= 0 ω0
vp, carrier
β vp, sb
0 ωa
∆ω β
v =
p, envelope ∆β βa β0 βb
∆ωd ω
lim= = v (ω )
∆ω → ∆β β g 0
0 d ω
0
Plane Wave Reflection & Dispersion - sites.google.com/site/ncpdhbkhn 45
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_xiii_plane_wav.pdf