Bài giảng Engineering electromagnetic - Chapter X: Magnetic Forces & Inductance - Nguyễn Công Phương
Define inductance of a coil as:
• A.k.a self-inductance
• Φ: magnetic flux
• N: number of turns
• I: current flowing in the coil
• H (henry) ↔ weber-turn/A
• Stands for linear inductor
63 trang |
Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 214 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter X: Magnetic Forces & Inductance - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Magnetic Forces & Inductance
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 2
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 3
Force on a Moving Charge (1)
• In an electric field: F = QE
• This force is in the same direction as the EFI (positive
charge)
• In a magnetic field: F = Qv B
• This force is perpendicular to both v & B
• In an electromagnetic field: F = Q(E + v B)
• (Lorentz force)
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 4
Ex. 1 Force on a Moving Charge (2)
6
The point charge Q = 18 nC has a velocity of 5 10 m/s in the direction av = 0.04 ax – 0.05 ay
+ 0.2 az. Find the magnitude of the force exerted on the charge by the following fields:
a) B = –3ax + 4 ay + 6 az mT; b) E = –3ax + 4 ay + 6 az kV/m; c) B & E acting together.
= ×
FB Q v B
a 0.04a− 0.05 a + 0.2 a
v =v v =5 × 10 6 x y z
2 2 2
av 0.04+ 0.05 + 0.2
=×6 − +
5 10 (0.19ax 0.24 a y 0.95 a z ) m/s
aaaxyz aaa xyz
→=×= =×××−9 3 −
FB Q v B Qvx v y v z 18 10 5 10 0.19 0.24 0.95
−3 4 6
Bx B y B z
=− − +
0.47ax 0.36 a y 0.0036 a z mN
→==2 + 2 + 2 =
FBF B 0.47 0.36 0.0036 0.5928 mN
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 5
Ex. 1 Force on a Moving Charge (3)
6
The point charge Q = 18 nC has a velocity of 5 10 m/s in the direction av = 0.04 ax – 0.05 ay
+ 0.2 az. Find the magnitude of the force exerted on the charge by the following fields:
a) B = –3ax + 4 ay + 6 az mT; b) E = –3ax + 4 ay + 6 az kV/m; c) B & E acting together.
= =×−9 −+ + × 3 µ F = 0.5928 mN
FE Q E 1810(3ax 4 a y 6)10 a z N B
→==×−6 2 ++= 2 2
FEF E 18 10 3 4 6 0.1406mN
= +× = +
FEBQ( EvBFF ) E B
=−6 −+++
18.10 ( 3ax 4 a y 6 a z )
+− − + × −3
( 0.47ax 0.36 a y 0.0036 a z ) 10
=− − +
0.53ax 0.29 a y 0.11 a z mN
→==2 + 2 + 2 =
FEBF EB 0.53 0.29 0.11 0.6141 mN
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 6
Ex. 2 Force on a Moving Charge (4)
A test charge Q C, moving with a velocity v = ax + ay m/s, experiences no force in a
region of electric & magnetic fields. If the magnetic flux density B = ax – 2az T, find E.
F=Q( EvB +× ) = 0
→E =− v × B
=− + × −
(aaxy )( a x 2) a z
= − +
2ax 2 a y a z V/m
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 7
y
Ex. 3 Force on a Moving Charge (5)
v
–2
Given a magnetic flux density B = 10 ax T, find the
force on an electron whose velocity is 10 7 m/s:
45 o
a) In the x direction, y direction, & z direction.
b) In the xy plane at 45 o to the x axis. 0 x
=×=7 ×− 2 =
FvBxQQ(10 a x 10 a x ) 0
=×=−×−19 7 × − 2 =× − 14
FvByQ 1.6 10 (10 aa yxz 10 ) 1.6 10 a N
=×=−×−19 7 × − 2 =−× − 14
FvBzQ 1.6 10 (10 aa zx 10 ) 1.6 10 a y N
=o + o 7
v(cos45 ax sin 45 a y )10 m/s
=×=−×−19 o + o 72 × −
FvBQ 1.6 10 (cos45 ax sin 45 a y )10 10 a x
= × −14
1.13 10az N
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 8
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 9
Force on a Differential Current Element (1)
• Force on a differential current element:
dF = dQv B
• If charges are in motion in a conductor, the force is
transferred to the conductor
• Consider only force on conductors carrying currents
• If dQ = ρvdv (dv is an incremental volume)
→ dF = ρvdv v B
• J = ρvv
→ dF = J Bdv
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 10
Force on a Differential Current Element (2)
dFJB= × dv
JLdv= Id
→dFLB = Id ×
→=FJBLBBL ×dv = Id ×=− I × d
∫V ∫ ∫
For a straight conductor in a uniform magnetic field:
FLB=I ×
F= BIL sin θ
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 11
Ex. Force on a Differential Current Element (3)
Find the total force on the loop. z
= I = 10 10 A
H a z az A/m
2π x 2π x y
−6
− 10 2.10 (1, 0, 0)
B=µ H =4 π × 10 7 a = a T (1, 2, 0)
0 2π x z x z
−6
= − × =−×−3 2.10 ×
FI ∫ B d L 5 10 ∫ az d L (3, 0, 0) 5 mA
x x
=−−8 3az ×+ 2 a z ×+ 1 a z ×+ 0 a z ×
10 dxax dy a y dx a x dy a y
∫x=1x ∫ y = 03 ∫ x = 3 x ∫ y = 2 1
=−−8 3 +−+1 2 10 +− = − × −8
10ln xay y ()ln a x xy a y () a x 1.33 10ax N
13 0 32
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 12
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 13
Force between Differential Current Elements (1)
I d L× a
dH = 1 1R 12
2 π 2
4 R12
= × → = ×
dF Id L B dd(F2 ) Id 22 L d B 2
= µ
dBH2 0 d 2
I I
→dd()F =µ 1 2 dd LLa ×× ( )
2 0π 2 2 1R 12
4 R12
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 14
Ex.Force 1 between Differential Current Elements (2)
z
Given I1dL1 = – 3ay Am; I2dL2 = – 4az Am. I2dL2
Find the differential force on dL2.
I I
dd()F=µ 1 2 dd LLa × ( × ) R12
2 0π 2 2 1R 12 y
4 R12
π × −7
=4 10 × ×
Id2L 2( Id 1 L 1 a R 12 ) I dL
4π R2 1 1
12 x
=− +− +−
R12 (1 5) ax (6 2) a y (4 1) a z
−4a + 4 a + 3 a
=− + + →=x y z =++2 2 2
4ax 4 a y 3 a z aR12;R 12 443
42+ 4 2 + 3 2
π × −7 (3)(4−a ×− aaa + 4 + 3)
→ =4 10 −× y xyz
d() d F2 (4) a z
4π (42+ 4 2 + 3) 23/2
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 15
Ex.Force 1 between Differential Current Elements (3)
z
Given I1dL1 = – 3ay Am; I2dL2 = – 4az Am. I2dL2
Find the differential force on dL2.
I I
dd()F=µ 1 2 dd LLa × ( × ) R12
2 0π 2 2 1R 12 y
4 R12
−7 − ×− + +
4π × 10 (3)(4ay aaa x 4 yz 3)
=( − 4a ) × I dL
4π z 2+ 2 + 23/2 1 1
(4 4 3) x
ax a y a z
× =
A B Ax A y A z
B B B
x y z ax a y a z
→− ×− + + = − = − +
(3)(4ay aaa xyz 4 3) 0 30 3(3ax 4 a z )
−4 4 3
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 16
Ex.Force 1 between Differential Current Elements (4)
z
Given I1dL1 = – 3ay Am; I2dL2 = – 4az Am. I2dL2
Find the differential force on dL2.
I I
dd()F=µ 1 2 dd LLa × ( × ) R12
2 0π 2 2 1R 12 y
4 R12
−7 − ×− + +
4π × 10 (3)(4ay aaa x 4 yz 3)
=( − 4a ) × I dL
4π z 2+ 2 + 23/2 1 1
(4 4 3) x
ax a y a z
× = − ×− + + =− +
A B Ax A y A z (3)(4ay aaa xyz 4 3) 3(3 aa xz 4)
Bx B y B z
ax a y a z
→−×−×−++ = − =
(4)(3)(4az a y aaa xyz 4 3) 0 0 4 36 a y
−9 0 − 12
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 17
Ex.Force 1 between Differential Current Elements (5)
z d( d F2 )
Given I1dL1 = – 3ay Am; I2dL2 = – 4az Am. I2dL2
Find the differential force on dL2.
I I
dd()F=µ 1 2 dd LLa × ( × ) R12
2 0π 2 2 1R 12 y
4 R12
−7 − ×− + +
4π × 10 (3)(4ay aaa x 4 yz 3)
=( − 4a ) × I dL
4π z 2+ 2 + 23/2 1 1
(4 4 3) x
− ×− ×−+ + =
(4)az (3)(4 a y aaa xyz 4 3) 36 a y
−7
→ = 10 = × −8
d() d F2 36 a y 1.37 10a y N
(42+ 4 2 + 3) 23/2
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 18
Ex.Force 2 between Differential Current Elements (6)
z d( d F2 )
Given I1dL1 = – 3ay Am; I2dL2 = – 4az Am. I2dL2
Find the differential force on dL1.
– 8
(d(dF2) = 1.37 10 ay N was found in Ex.1) R12
I I y
dd()F=µ 1 2 dd LLa × ( × )
2 0π 2 2 1R 12
4 R12
I I I1dL1
dd()F=µ 2 1 dd LLa × ( × )
1 0π 2 1 2R 21 x
4 R21 d( d F1 )
−
4π × 10 7
=IdL ×( Id L × a )
π 2 1 1 2 2R 21 → =− × −8
4 R21 d( d F1 ) 1.83 10 a z
=− +− +−
R21 (5 1) ax (2 6) a y (1 4) a z
Why d(dF2) ≠ d(dF1) ?
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 19
Force between Differential Current Elements (7)
I I
dd()F=µ 1 2 dd LLa × ( × )
2 0π 2 2 112R
4 R12
I I d L× a
→FL =µ 12d × 112R
2 0π ∫ 2 ∫ 2
4 R12
I I d L× a
=µ 1 2 1R 12 × dL
0π ∫ ∫ 2 2
4 R12
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 20
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 21
Force & Torque on a Closed Circuit (1)
• Force on a filamentary closed circuit: FBL= −I ∫ × d
• If B = const → FBL= −I × ∫ d
• In an electrostatic field: ∫ dL = 0
• → the force on a closed filamentary circuit in a uniform
magnetic field is zero
• General : any real closed circuit carrying direct currents
experiences a total vector force of zero in a uniform
magnetic field
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 22
Force & Torque on a Closed Circuit (2)
z z
T T
y y
0 0
R1 F1
F R2
R P P
P 2 R 1
x x 12
F2 = – F1
= ×+ ×
TRF= × TRFRF1 1 2 2
= − ×
(RRF1 2 ) 1
= ×
RF21 1
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 23
Force & Torque on a Closed Circuit (3)
= × y
dT1 R 1 d F 1 I B
= × = −
dF1 Idx ax B 0 Idx( B0yza B 0 zy a ) 3
= − 1 dy x
R1 dy a y 2
2 4
1
→=−dT dy a × Idx( B aa − B ) R 1
12 y 0 yz 0 zy
= − 1
dxdyIB 0ya x dx
2 → + =−
dT1 d T 3 dxdyIB 0 y a x
= − 1
Similarly: dT3 dxdyIB 0 y a x
2 + =
Similarly: dT2 d T 4 dxdyIB 0 x a y
→ = − = ×
dT dxdyI( B0xy a B 0 yx a ) dxdyI az B 0 =Id S × B
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 24
Force & Torque on a Closed Circuit (4)
• The differential magnetic dipole moment: dm = Id S
• Unit: Am2
• → dT = dm B
• Holds for differential loops of any shape
• In a uniform magnetic field: T = IS B = m B
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 25
Force & Torque on a Closed Circuit (5)
Ex. 1 z
Given B0 = –0.6 ay + 0.8 az T. Find the torque.
y
0
T=I S × B
4 mA (1, 2, 0)
→=×−3 × ×− + x
T4 10 (1 2 az ) (0.6 aa y 0.8 z )
ax a y a z ax a y a z
× = →× ×− + = = 1.2 a
A B Ax A y A z 12az (0.6 a y 0.8) a z 0 0 2 x
0− 0.6 0.8
Bx B y B z
→ = × −3
T4.8 10 a x Nm
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 26
Ex. 2 Force & Torque on a Closed Circuit (6)
z
Find the force per meter between two infinite & parallel I I
filamentary current carrying conductors that are separated d 1 2
& carry a current I in opposite direction.
d
y
I 0
H= a ϕ
2πρ
x
I I I= I = I
BHa==µ µ1 =− µ 1 a T 1 2
2020πρϕ 0 π x
2ρ=d , ϕ = π /2 2 d
I I
I1 = µ 1 2
dF= I d L × B =I( − dz a ) ×−µ a 0dz 2 a y
2 2 2 2 2z 0 2π d x 2πd
2
→ = 1 µ I1 I 2 = µ I
F2∫ = 0dz 2 a y 0 a y N/m
z2 0 2π d 2π d
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 27
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 28
Magnetization & Permeability (1)
• The magnetization is defined basing on the magnetic dipole
moment m
2
• m = IbdS (unit: Am )
• Ib: the bound current circulates about a path enclosing dS
n∆ v
=
• For ∆v, the total magnetic dipole moment: mtotal ∑ mi
i=1
• n: number of magnetic dipole in a unit volume
n∆ v
= 1
• Definition of the magnetization: Mlim ∑ mi
∆v →0 ∆
v i=1
• M: the (total) magnetic dipole moment per unit volume
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 29
Magnetization & Permeability (2)
n∆ v
= 1
Mlim∑ mi : the (total) magnetic dipole moment per u nit volume
∆v →0 ∆
v i=1
dI= I ndSLSL. d = nI d . d
b b b →dI = nm. d L
= b
mIb d S
→ = → =
dIb ML. d Ib ∫ ML. d
Surface defined by
closed path
m= Id S
θ
dL
dS
Ib
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 30
Magnetization & Permeability (3)
=
∫ H.d L I T
= B
H
µ →=−=B −
0 IIIT b ∫ M . d L
= + µ
IT I b I 0
B =µ +
= Redefine: HM= − BHM0 ( )
Ib ∫ M. d L µ
0
(if M = 0 then B = µ0H)
M
Definition of the magnetic susceptibility: χ =
m H
µ= + χ
Defintion of the relative permeability: R1 m
µ= µ µ
Definition of the permeability: 0 R
BH=µ
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 31
Magnetization & Permeability (4)
I= J. d S
b∫S b
I= J. d S
T ∫S T
I= J. d S
∫S
= ∇× =
Ib ∫ ML. d M J b
B
= → ∇× = J
Ib ∫ J b . d S µ T
S 0
ML.d= ( ∇ × MS ). d ∇×H = J
∫ ∫ S
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 32
I
Ex. Magnetization & Permeability (5) a
A line current I of infinite extent is within a cylinder of radius a
that has permeability µ, the cylinder is surrounded by free space. ρ
Find B, H, & M everywhere, & the current density?
µ µ
I 0
I= HL. d = Hϕ 2πρ →Hϕ =
∫ 2πρ
µI
µHϕ =, 0 < ρ < a
2πρ
→B =
ϕ µ
µ=0I ρ >
0Hϕ , a
2πρ
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 33
I
Ex. Magnetization & Permeability (6) a
A line current I of infinite extent is within a cylinder of radius a
that has permeability µ, the cylinder is surrounded by free space. ρ
Find B, H, & M everywhere, & the current density?
B µ µ
=µ + →MH = − 0
BHM0( ) µ
0
µ ( µ− µ ) I
−=1H0 , 0 <<ρ a
→ = µ ϕ πρµ
Mϕ 0 2 0
0, ρ > a
∂Mϕ 1 ∂
JM=∇×=− aρ +(ρM ϕ ) a = 0, 0 << ρ a
b ∂z ρ ∂ ρ z
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 34
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 35
Magnetic Boundary Conditions (1) ∆L Ht1
BN1 ∆S
∫ B.d S = 0
S µ
1 Ht2
→ ∆− ∆=
BN1 SB N 2 S 0 BN2 aN12
µ2
→ =
BN2 B N 1
µ µ χ µ
→HH = 1 →=MHHMχ = χ 1 = m2 1
N2µ N 1 NmNm2222µ N 1 χ µ N 1
2 2m 1 2
= → ∆− ∆=∆
∫ H.d L I Ht1 LH t 2 L KL
B B χ
→ − = →t1 − t 2 = K →M =m2 M − χ K
Ht1 H t 2 K µ µ t2χ t 1 m 2
1 2 m1
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 36
Magnetic Boundary Conditions (2) ∆L Ht1
BN1 ∆S
(H− H ) × a = K
1 2N 12 µ
1 Ht2
(H− H ) = a × K BN2 aN12
t1 t 2 N 12 µ2
Normal Tangential
µ
H= 1 H − =
N2µ N 1 Ht1 H t 2 K
2
B B
t1− t 2 = K
B= B µ µ
N2 N 1 1 2
χ µ χ
MM= m2 1 M=m2 M − χ K
N2χ µ N 1 t2χ t 1 m 2
m1 2 m1
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 37
Ex. 1 Magnetic Boundary Conditions (3)
Where z > 0 (region 1), µ = µ1 = 4 µH/m; where z < 0 (region 2), µ2 = 7 µH/m;
at z = 0, given a surface current K = 80 ax A/m. In region 1 there is a magnetic
field B1 = 2 ax – 3ay + az mT. Find B2.
= =−+−−=
BN1( B.aa 1 NN 12 ) 12 [(2 aaa xyzzzz 3 ).( a )]( aa ) mT
→ = =
BN2 B N 1 a z mT
= + → = −
BBB1N 1 t 1 BBBt1 1 N 1
→= −+− = −
Bt1 (2 aaa xyz 3 )()2 a z aa xy 3 mT
−3
B (2a− 3 a )10
→==Ht1 x y =−500 a 750 a A/m
t1 µ −6 x y
1 4.10
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 38
Ex. 1 Magnetic Boundary Conditions (4)
Where z > 0 (region 1), µ = µ1 = 4 µH/m; where z < 0 (region 2), µ2 = 7 µH/m;
at z = 0, given a surface current K = 80 ax A/m. In region 1 there is a magnetic
field B1 = 2 ax – 3ay + az mT. Find B2.
= −
Ht1 500 a x 750 a y A/m
− = ×
(Ht1 H t 2 ) a N 12 K
→=− ×= − −−×
HHaKttN2 1 12 500 a x 750 a yzz ( a ) 80 a
ax a y a z
× =
A B Ax A y A z
Bx B y B z
→= − += −
Ht2 500 a x 750 aa yy 80 500 a x 670 a y A/m
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 39
Ex. 1 Magnetic Boundary Conditions (5)
Where z > 0 (region 1), µ = µ1 = 4 µH/m; where z < 0 (region 2), µ2 = 7 µH/m;
at z = 0, given a surface current K = 80 ax A/m. In region 1 there is a magnetic
field B1 = 2 ax – 3ay + az mT. Find B2.
= −
Ht2 500 a x 670 a y A/m
→=µ =×−6 − =−
BHtt2 2 2 7 10 (500 aaaa xyxy 670 ) 3.5 4.69 mT
= +
BBB2N 2 t 2
=
BN2 a z mT
→=+= − +
BBB2N 2 tt 2 3.5 a x 4.69 aa y z mT
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 40
Ex. 2 Magnetic Boundary Conditions (6)
µ= 1000 µ µ= 1000 µ
A uniform magnetic field of strength B = 1.2 T 0 Air 0
exists within an iron core. If an air gap is cut 30 o
with the orientation shown, find the magnitude B
and direction of B in the gap.
= =o =× =
BN2 B N 1 Bcos30 1.2 0.866 1.0 T 1 2
B B
HH= →t1 = t 2
t1 t 2 µ µ
0
µ 1
→=B0 B =××1.2 sin 30o = 0.06 mT
t2µ t 1
10000 1000
→=22 += 2 + ×− 32 ≈
B2 BN 2 B t 2 1.0 (0.06 10 ) 1 T
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 41
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 42
The Magnetic Circuit (1)
= −∇
E = −∇V H Vm
B B
V= E. d L V= H. d L
AB ∫A mAB ∫A
JE= σ BH= µ
I= J. d S Φ = B.d S
∫S ∫S
= Φ
V= IR Vm R m
d = d
R = Rm
σ S µS
= =
∫ E.d L 0 ∫ H.d L I total
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 43
The Magnetic Circuit (2)
1
FNI= = ∫ H. d L
2
=H.d L + H. d L + H. d L F = NI
∫1 ∫ 2 ∫ 3
3
=ℓ + ℓ + ℓ
HHH11 22 33
Rm1 R1
E
F Ф Rm2 I R2
Rm3 R3
Φ+ Φ+ Φ= + + =
Rm1 R m 2 R m 3 F RI1 RI 2 RI 3 E
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 44
The Magnetic Circuit (3)
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 45
The Magnetic Circuit (4)
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 46
Ex. 1 The Magnetic Circuit (5)
The iron core has an average length of 0.44 m & a
cross-section of 0.02 0.02 m2. The air gap is 2 mm.
It is wound with 400 turns. Find the current producing
ℓair
a magnetic flux of 0.141 mWb in the air gap?
−
Φ0.141 × 10 3
B = = = 0.35T
iron −2 − 2
Siron (2× 10 )(2 × 10 )
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 47
The Magnetic Circuit (6)
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 48
Ex. 1 The Magnetic Circuit (5)
The iron core has an average length of 0.44 m & a
cross-section of 0.02 0.02 m2. The air gap is 2 mm.
It is wound with 400 turns. Find the current producing
ℓair
a magnetic flux of 0.141 mWb in the air gap?
−
Φ0.141 × 10 3
B = = = 0.35T
iron −2 − 2
Siron (2× 10 )(2 × 10 )
→ =
Hiron 850 A/m
= +2 =× − 4 2
Sair (0.02 0.002) 4.84 10 m
−
Φ0.141 × 10 3
H == =×2.32 105 A/m
air µ −7 − 4
airS air ()()4π × 10 4.84 × 10
=ℓ + ℓ =×+×××=5− 3
F Hiron iron H air air 850 0.44 2.32 10 2 10 838 A
F 838
→=I = = 2.09 A
N 400
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 49
Ex. 2 The Magnetic Circuit (6)
ℓ1 ℓ3
F Ф
1 ℓ Ф
Ф2 2 3
−ℓ = ℓ = ℓ
FHHH11 22 33
Φ = Φ + Φ
1 2 3
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 50
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 51
Potential Energy of Magnetic Fields (1)
1
W= B.H dv
H 2 ∫V
1
= µH2 dv
2 ∫V
1 B2
= dv
2 ∫V µ
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 52
Ex. Potential Energy of Magnetic Fields (2) I
Find the magnetic energy associated with unit length of an a
infinitely long straight wire of radius a carrying a current I.
= I ρ
Hinside a ϕ
2π a2
1
W= µ Hdv2
inside 2 ∫V
2
1 a I 2 µI
=µ ρ2 ()1 × 2 πρρ × d =
∫ 2 4 π
2 0 4π a 16
I
H= a ϕ
outside 2πρ
1 1 ∞ I 2
= µ 2 =µ()1 × 2 πρ × d ρ = ∞
Woutside ∫ 0 Hdv ∫ 0 2 2
2 V 2 0 4π ρ
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 53
Magnetic Forces & Inductance
1. Force on a Moving Charge
2. Force on a Differential Current Element
3. Force between Differential Current Elements
4. Force & Torque on a Closed Circuit
5. Magnetization & Permeability
6. Magnetic Boundary Conditions
7. The Magnetic Circuit
8. Potential Energy of Magnetic Fields
9. Inductance & Mutual Inductance
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 54
Inductance & Mutual Inductance (1)
NΦ
• Define inductance of a coil as: L =
• A.k.a self-inductance I
• Φ: magnetic flux
• N: number of turns
• I: current flowing in the coil
• H (henry) ↔ weber-turn/A
• Stands for linear inductor
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 55
Inductance & Mutual Inductance (2)
µ Id b
Φ = 0 ln
2π a d
Φ c
L = I a
I I b
µ d b
→L = 0 ln H
2π a
µ b
→per-meter inductance: L = 0 ln H/m
2π a
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 56
Inductance & Mutual Inductance (3)
µ NI µ NIS
B = 0 → Φ = 0
φ πρ πρ ρ
2 2 0 0
NΦ
L =
I
µ N2 S
→L = 0
πρ
2 0
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 57
Inductance & Mutual Inductance (4)
2W
L = H
I 2
1
W= B.H dv
H 2 ∫V
∫ B.Hdv
→L = V
I 2
= ∇× N
BA =Φ+Φ+ +Φ+ +Φ = Φ
Total 1 2 ...i ... N∑ i
i
1
→=L∫ H.( ∇× A ) dv
I 2 V
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 58
Inductance & Mutual Inductance (5)
1
L=∫ H.( ∇× A ) dv
I 2 V
∇.( A × H )( = H. ∇× A )( − A. ∇× H )
1
→=L∫ ∇×.() A H dv + ∫ A. () ∇× H dv
I 2 V V
DSD.d= ∇ . dV
∫S ∫ V
∇×H = J
1
→=L ∫(A × H ). d S + ∫ A.J dv
I 2 S V
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 59
Inductance & Mutual Inductance (6)
1
L=(A × H ). d S + A.J dv
2 ∫ ∫ 1
I S V →L = A.J dv
2 ∫V
(A× H ).d S = 0 I
∫S µJ
A = dv
∫V 4π R
1 µJ
→L = ∫ ∫ dvdv .J 1 µId L
I 2 V V 4π R →L = ∫ ∫ .L Id
I 2 4π R
JLdv≈ Id
µ dL
= .Ld
4π ∫ ∫ R
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 60
Inductance & Mutual Inductance (7)
1 µIdLL µ d
L= ∫∫ .L.L Id = ∫∫ d
I 2 4πRR 4 π
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 61
Inductance & Mutual Inductance (8)
2W NΦ
L=H ↔ L =
I 2 I
1
L= ∫ A.J dv 1
I 2 V →L = A. d L
I ∫ 1
JLdv≈ Id →L =( ∇× A ). d S
I ∫S
Stokes' theorem: AL.d= ( ∇ × AS ). d BA= ∇×
∫ ∫ S
→ = 1
L∫ B. d S Φ NΦ
I S →L = With N turns: L =
I I
Φ = B.d S
∫S
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 62
Inductance & Mutual Inductance (9)
Φ
= N2 12
• Definition of mutual inductance : M12
I1
• Φ12 : flux linking I1 & I2
• N2: number of turns in circuit 2
• Unit: H
Magnetic Forces & Inductance - sites.google.com/site/ncpdhbkhn 63
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_x_magnetic_for.pdf