Bài giảng Engineering electromagnetic - Chapter VII: Dielectrics & Capacitance - Nguyễn Công Phương
Using Field Sketches to Estimate Capacitance (1)
• A conductor boundary is an equipotential surface
• The electric field intensity E & the electric flux D are
both perpendicular to the equipotential surfaces
• E & D are perpendicular to the conductor boundaries &
posses zero tangential values
• The lines of electric flux, or streamlines, begin &
terminate on charge & therefore, in a charge-free,
homogeneous dielectric, begin & terminate only on the
conductor boundaries
36 trang |
Chia sẻ: linhmy2pp | Lượt xem: 231 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter VII: Dielectrics & Capacitance - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Dielectrics & Capacitance
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectrics & Capacitance
1. Dielectric Materials
2. Boundary Conditions for Perfect Dielectric Materials
3. Capacitance
4. Using Field Sketches to Estimate Capacitance
5. Current Density & Flux Density
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectric Materials (1)
+–
d Q
– +
E E
• Dipole moment: p = Qd
• Q: the positive one of the 2 bound charges
• d: the vector from the negative to the positive charge
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectric Materials (2)
• Dipole moment: p = Qd
• If there are n dipoles per unit volume, then the total
dipole moment in ∆v:
n∆ v
=
ptotal ∑ p i
i=1
• The polarization:
n∆ v
= 1
Plim ∑ p i
∆v →0 ∆
v i=1
• Unit: C/m2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectric Materials (3)
+ ∆S +
3 E +
Density: n molecules/m + +
1
∆v = dcos θ ∆ S + – d cos θ
∆S – + + 2
– 1
∆ = ∆ + + θ d cos θ
Qb nQ v – – 2
→∆=θ ∆ – d
Qb nQdcos S – –
= ∆ –
nQd. S →∆ = ∆ –
Qb P. S
p= Q d →P = nQ d
→Q = − P. d S
b ∫S
→ =(ε + )
Gauss’s law: Q= ε E. d S Q∫ 0E P. d S
T ∫S 0 S
QT = Qb + Q → Q = QT – Qb (Q: the total free charge)
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectric Materials (4)
Q=(ε E + P). d S
∫S 0 → =ε +
D0 E P
Gauss’s law: Q= D. d S
∫S
Divergence theorem: DSD.d= ∇ . dv
∫S ∫ v
→ ∇.D = ρ
= ρ v
Qv dv
∫V
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectric Materials (5)
• D = ε0E + P
• In an isotropic material, E & P are always parallel,
regardless of the orientation of the field
• P = χeε0E
• χe : the electric susceptibility
• → D = ε0E + P = ε0E + χeε0E = ( χe + 1) ε0E
• εr = χe + 1: the relative permitivity
• → D = ε0εrE = εE
• ε = ε0εr : the permitivity
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectrics & Capacitance
1. Dielectric Materials
2. Boundary Conditions for Perfect Dielectric
Materials
3. Capacitance
4. Using Field Sketches to Estimate Capacitance
5. Current Density & Flux Density
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Boundary Conditions for Perfect Dielectric Materials (1)
∆w
= D ∆h Etan 1
∫ EL.d 0 N1 ∆S
→ ∆− ∆= Region 1, ε1 Etan 2
Etan1 w E tan 2 w 0
→ = DN2
EEtan1 tan 2 Region 2, ε2
DD D ε
→tan1 =EE = = tan 2 →tan 1 = 1
εtan1 tan 2 ε ε
1 2 Dtan 2 2
∆Q =ρ ∆ S
S →DD − = ρ
∆ = ∆ − ∆ N1 N 2 S →DD =
QDN1 SD N 2 S N1 N 2
No free charge on the interface → ρ = 0
S E ε
→εEE = ε →N1 = 2
1 N1 2 N 2 ε
EN 2 1
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Boundary Conditions for Perfect Dielectric Materials (2)
∆w
∆h E
DN1 ∆S tan 1
Region 1, ε1 Etan 2
DN2
= Region 2, ε2
EEtan1 tan 2
D ε
tan 1= 1
ε If we know the field on one side (e.g E1 or D1)
Dtan 2 2
of a boundary, we cand find quickly the field
=
DDN1 N 2 on the other side (E2 & D2)
E ε
N1 = 2
ε
EN 2 1
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Boundary Conditions for Perfect Dielectric Materials (3)
D1
= DN1
DDN1 N 2
θ1
= θ Dtan 1
DDN1 1cos 1 Region 1, ε1
= θ ε1 > ε2
DDN 2 2cos 2
θ DN2
→θ = θ D2 2
DD1cos 1 2 cos 2
Region 2, ε2
D ε Dtan 2
tan 1= 1
D ε θ ε
tan 2 2 →tan 1 = 1 →θ
DD= sin θ tan θ ε 2 →
tan 1 1 1 2 2 D2
= θ DDcosθ= cos θ
DDtan 2 2sin 2 1 1 2 2
→ε θε = θ
21DDsin 1 12 sin 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Boundary Conditions for Perfect Dielectric Materials (4)
D1
DN1
ε θ1
2 Dtan 1
θ= atan tan θ Region 1, ε1
2 1 ε
1 ε1 > ε2
D
D θ2 N2
2 2
ε Region 2, ε2
DD=cos2θ + 2 sin 2 θ Dtan 2
21 1ε 1
1
ε 2
EE=sin2θ + 1 cos 2 θ
211ε 1
2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Boundary Conditions for Perfect Dielectric Materials (6)
Ex.
2
Given the region z < 0 with εr1 = 3.2 & D1 = –30 ax + 50 ay + 70 az nC/m .
The region z > 0 possesses εr2 = 2. Find DN1, Dtan 1, Dtan 1, θ1, DN2, Dtan 2, D2, θ2 ?
= = 2
DN1 D 1 z 70 nC/m
= − + 2
Dtan1 30 a x 50 a y nC/m
= =−2 + 2 = 2
Dtan1D tan 1 ( 30) 50 58.3nC/m
= =−222 + + = 2
D1D 1 ( 30) 50 70 91.1nC/m
θ =Dtan 1 =58.3 = o
1 atan atan 39.8
D1z 70
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Boundary Conditions for Perfect Dielectric Materials (7)
Ex.
2
Given the region z < 0 with εr1 = 3.2 & D1 = –30 ax + 50 ay + 70 az nC/m .
The region z > 0 possesses εr2 = 2. Find DN1, Dtan 1, Dtan 1, θ1, DN2, Dtan 2, D2, θ2 ?
==2 →= 2
DNN2 D 170nC/mD Nz 2 70 a nC/m
D εD ε ε 2
tan11=→ tan 11 =→D = 2 D =−+(30 aa 50 )
ε εtan2 ε tan 1 x y
Dtan22D tan 22 1 3.2
= − + 2
18.75ax 31.25 a y nC/m
= +=− + + 2
DDD2tanN 2 2 18.75 a x 31.25 aa y 70 z nC/m
ε 2
θ=atan tan θ 2 = atan tan 39.8o = 27.5 o
2 1 ε
1 3.2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectrics & Capacitance
1. Dielectric Materials
2. Boundary Conditions for Perfect Dielectric Materials
3. Capacitance
4. Using Field Sketches to Estimate Capacitance
5. Current Density & Flux Density
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (1) + + +
+ + +
+ +Q +
Q dielectric, ε +
Capacitance: C = + Conductor 2
ε – + +
V0 E.d S – – – + +
∫S – – + + +
→C = – – Q –
= ε + Conductor 1 –
QE. d S – ––
∫S − E.d L – – –
+ ∫− – –
= −
V0 ∫− E. d L
• V0 : work to carry a unit positive charge from the surface
1 to the surface 2
• C depends on the physical dimensions (of the system of
conductors) & on the permittivity
• Unit: F (farad), C/V, practically µF, nF, pF
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (2)
ρ
S
E= a Conductor surface, –ρ
ε z S z = d
= ρ E
DS a z
Conductor surface, +ρS z = 0
bottom 0 ρ ρ
V= − E. d L = − S dz = S d
0 ∫top ∫d ε ε
= ρ ε S
QS S C =
d
Q
C =
V0
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (3)
= 1 ε 2
W Edv Conductor surface, –ρS z = d
E ∫V
2 ρ
E = S
ε E
2
S d ερ Conductor surface, +ρS z = 0
→ = 1 S
WE ∫ ∫ 2 dzdS
2 0 0 ε
1 ρ 2 1 ε S ρ 2d 2
= S Sd = S
2 ε 2 d ε 2
ε S 1 1 1 Q2
C = → W= CV2 = QV =
d E 20 2 0 2 C
ρ
V= S d
0 ε
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
ρ = a ρ = b
Capacitance (4) ρL
ρ b
V = L ln
ab 2πε a
2πε L
Q= ρ L → C = L
L b
Q ln
C = a
Vab
Q 1 1
V = −
ab πε 4πε Q
4 a b →C =
1 1 a
= Q −
C a b
Vab b
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (5)
= + Area, S
V0 Ed 11 Ed 22
DDEE= →ε = ε
N1 N 2 11 22 ε
V 2 d2
→ = 0 Conducting d
E1
ε plates ε
d+ d 1 1 d1
1 2 ε
2
→ρ == ε = V0
S1DE 1 11
d1+ d 2
ε ε 1 1
1 2 C = =
=ρ = ρ d d 1 1
QS S S 1 S 1+ 2 +
Q εS ε S CC
C = 1 2 1 2
V0
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (6)
Area, S
Conducting
1 1 plates
C = =
ε2 d2
d1+ d 2 1+ 1 d
ε ε
1S 2 S CC1 2 ε1 d1
Conducting
plates
εS+ ε S S S
CCC=11 22 = + 1 2
d 1 2 d
ε1 ε2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (7) y P(x, y, 0)
ρ R R2
V = L ln 01
1 2πε R R1
1 (– a, 0, 0)
−ρ R
V = L ln 02 (a, 0, 0) x
2 πε
2 R2 – ρL
ρ R R z +ρL
→=+=V V V L ln01 − ln 02
1 2 πε
2 R1 R 2
ρ R R
= L ln 01 2
πε
2 R02 R 1
= ρ (x+ a ) 2 + y 2
R01 R 02 →V = L ln
2πε (x− a ) 2 + y 2
R=( xa − ) 2 + y 2
1 ρ +2 + 2
= L (x a ) y
R=( xa + ) 2 + y 2 ln
2 4πε (x− a ) 2 + y 2
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (8) y P(x, y, 0)
R2
ρ +2 + 2 R
L (x a ) y 1
V = ln (– a, 0, 0)
4πε (x− a ) 2 + y 2
(a, 0, 0) x
– ρ
Choosing an equipotential surface V1, we define: L
z +ρL
πε ρ
= 4V1 / L
K1 e
(x+ a ) 2 + y 2 K +1
→K = →−x22 ax1 ++= ya 2 2 0
1 2 2 −
(x− a ) + y K1 1
2 2
K +1 2a K
→−x a1 += y 2 1
− −
KK11 1 1
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Capacitance (9) y P(x, y, 0)
R
πε ρ 2
= 4V1 / L
K1 e R1
(– a, 0, 0)
2 2
K +1 2a K1 (a, 0, 0)
→−x a1 += y 2 x
− − – ρ
KK11 1 1 L
z +ρL
• The V = V1 surface is independent of z → it is a cylinder
• It intersects the xy plane in a circle of radius:
2a K
b = 1
−
K1 1
K +1
& this circle is centered at (x = h, y = 0) where h= a 1
−
K1 1
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
y
Capacitance (10) h
V0 = 0 V1
The V1 surface intersects the xy plane in
a circle of radius
b x
2a K1
b = z
K −1
1 K +1
& centered at (x = h, y = 0) where h= a 1
−
K1 1
=2 − 2
a h b
→ 4πε V If h, b & V1 are given
h+ h2 − b 2 →ρ = 1
K = L
1 b ln K1 then a, ρL & K1 can be found
πε ρ
= 4V1 / L
K1 e
ρ πε πε 2πε L
→ =LL = 4 L = 2 L =
Cplane, cylinder −1
VK1ln 1 ln[(h+ h2 − b 2 )/ b ] cosh (h / b )
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Ex. Capacitance (11)
Given the system, find the location & the y The equivalent
magnitude of the equivalent line charge, & the line charge
V0 = 0
location of the 50V equipotential surface.
=22 −= 22 −=
a h b 13 5 12 m
2 2 x
h+ h − b 13 + 12 V = 100 V
K = = = 5 h = 13 m 1
1 b 5 b = 5 m
→K = 25
1 π × ×−12 ×
πε →ρ =4 8.854 10 100 =
ρ = 4 V1 L 3.46 nC /m
L ln 25
ln K1
πε π × × −12
=2 = 2 8.85410 =
Cplane, cylinder − − 34.6 pF/m
cosh1 (h / b ) cosh 1 (13/ 5)
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Ex. Capacitance (12)
Given the system, find the location & the y The equivalent
magnitude of the equivalent line charge, & the line charge
V0 = 0
location of the 50V equipotential surface.
4πεV / ρ
= 2 L
K2 e
π × ××−12 × − 9 x
=e4 8.854 10 50/3.46 10 = 5.00
h = 13 m V1 = 100 V
2a K 2× 12 5 b = 5 m
→=b 2 = = 13.42 m
2 − −
K2 1 5 1
K +1 5+ 1
h= a 2 =12 = 18 m
2 − −
K2 1 5 1
=→= =
V325V b 3 29.06m, h 3 31.44m
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
y
Capacitance (13) h
V0 = 0 V1
πε
= 2 L
Cplane, cylinder
2 2
ln[(h+ h − bb )/ ] b x
b≪ h z
2πε L
→CC = = y
plane, cylinder plane, wire 2h
ln h
b
πε L
→C =
wire, wire 2h x
ln
b z
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectrics & Capacitance
1. Dielectric Materials
2. Boundary Conditions for Perfect Dielectric Materials
3. Capacitance
4. Using Field Sketches to Estimate Capacitance
5. Current Density & Flux Density
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Using Field Sketches to Estimate Capacitance (1)
• A conductor boundary is an equipotential surface
• The electric field intensity E & the electric flux D are
both perpendicular to the equipotential surfaces
• E & D are perpendicular to the conductor boundaries &
posses zero tangential values
• The lines of electric flux, or streamlines, begin &
terminate on charge & therefore, in a charge-free,
homogeneous dielectric, begin & terminate only on the
conductor boundaries
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Using Field Sketches to Estimate Capacitance (2)
∆L
E & D are both tan = 1
∆
perpendicular to the LN
equipotential surfaces
1 ∆ψ
E =
ε ∆ ∆ψ ∆
Ltan →1 = V
∆V ε ∆L ∆ L B
E = tan N
∆L ∆L A
N tan B’
∆L 1 ∆ ψ ∆LN A’
→tan =const =
∆ε ∆
LN V
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Using Field Sketches to Estimate Capacitance (3)
Q
C =
V0
= ∆= ∆ ψ
QNQNQ Q
= ∆
V0 NV V
N ∆ψ
→C = Q
∆
NV V
∆L 1 ∆ ψ
tan =const = = 1
∆ε ∆
LN V
NN∆L
→C =Qεtan = ε Q
∆
NLNV N V
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Using Field Sketches to Estimate Capacitance (4)
0
15
30
46
62
100 V 80
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Dielectrics & Capacitance
1. Dielectric Materials
2. Boundary Conditions for Perfect Dielectric Materials
3. Capacitance
4. Using Field Sketches to Estimate Capacitance
5. Current Density & Flux Density
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Current Density & Flux Density
JE= σ σ DE= ε ε
Eσ= −∇ V σ Eε= −∇ V ε
= = σ −
I∫J. d S ∫ Eσ . d S Vσ ∫ E.Lσ d
S S R =0 =
= − I σ Eσ .d S
Vσ0 ∫ E.L σ d ∫S
→
ε
Q= ε Eε . d S Q ∫ Eε .d S
∫S C = = S
= − Vε 0 − E.Lε d
Vε0 ∫ E.L ε d ∫
ε
→RC =
σ
Dielectrics & Capacitance - sites.google.com/site/ncpdhbkhn
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_vii_dielectric.pdf