Bài giảng Engineering electromagnetic - Chapter VI: Current & Conductors - Nguyễn Công Phương
Dipole: the plane between the 2 charges is zero potential
• That plane can be represented by a vanishingly thin conducting
plane, infinite in extent
• → the dipole can be substituted for a system of a charge and a
conducting plane, & then the fields above the conducting plane
obtain equivalence
32 trang |
Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 232 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter VI: Current & Conductors - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Current & Conductors
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Current & Conductors - sites.google.com/site/ncpdhbkhn 2
Current & Conductors
1. Current & Current Density
2. Metallic Conductors
3. Conductor Properties & Boundary Conditions
4. The Method of Images
5. Semiconductors
Current & Conductors - sites.google.com/site/ncpdhbkhn 3
Current & Current Density (1)
• Current:
dQ
I =
dt
• Unit A (ampère)
• Current is defined as the motion of positive charges
Current & Conductors - sites.google.com/site/ncpdhbkhn 4
Current & Current Density (2)
• Current: rate of movement of charge crossing a given
reference plane (of one coulomb per second)
• Current density: J (A/m2)
• The increment of current ∆I crossing an incremental
surface ∆S normal to the current density:
∆I = JN∆S
• If the current density is not perpendicular to the surface:
∆I = J. ∆S
• Total current: I= J. d S
∫S
Current & Conductors - sites.google.com/site/ncpdhbkhn 5
Current & Current Density (3)
∆ =ρ ∆ z
Qv v
∆ =ρ ∆ =ρ ∆ ∆
Qv v v SL
∆Q =ρ ∆ S ∆ x
v ∆x ∆S
∆Q → ∆I =ρ ∆ S y
∆ = v ∆
I t ∆∆L
∆t x x
=ρ ∆Sv
v x → = ρ
Jx v v x
∆ = ∆
I Jx S
= ρ
Jv v
Current & Conductors - sites.google.com/site/ncpdhbkhn 6
Current & Current Density (4)
Ex. 1 z
2 2 z = 2
Given J = 2ρzaρ + 7 zsin φaφ mA/m . Find the
total current leaving the circular band.
z = 1
= = ρ = 3
I∫ J. d S ∫ Jρ =3 .d S
S S x y
J=2 × 3z a + 7 z sin 2 ϕ a
ρ =3 ρ ϕ z dρ
=6za + 7 z sin 2 ϕ a
ρ ϕ dz
=ρ ϕ = ϕ z+dz
dS d dz aρ3 d dz a ρ z
0
φ
x φ+d φ ρ ρdφ
Current & Conductors - sites.google.com/site/ncpdhbkhnρ+d ρ 7
Current & Current Density (5)
Ex. 1 z
2 2 z = 2
Given J = 2ρzaρ + 7 zsin φaφ mA/m . Find the
total current leaving the circular band.
z = 1
= = ρ = 3
I∫ J. d S ∫ Jρ =3 .d S
S S x y
J=2 × 3z a + 7 z sin 2 ϕ a
ρ =3 ρ ϕ
=6za + 7 z sin 2 ϕ a
ρ ϕ → = ϕ
Jρ =3 .d S 18 zd dz
dS=ρ d ϕ dz aρ = 3 d ϕ dz a ρ
z=2ϕ = 2 π z=2
→I = 18 zdϕ dz =2π × 18 zdz = 169 mA
∫z=1 ∫ ϕ = 0 ∫z=1
Current & Conductors - sites.google.com/site/ncpdhbkhn 8
Current & Current Density (6)
The current leaving a closed surface: I= J. d S
∫S
The total charge in the surface: Qi
The law of conservation of charge
dQ
→=I∫ J. d S =− i
S dt
• in circuit analysis, I = dQ/dt because this is an entering current
• in electromagnetism, I = – dQ/dt because this is a leaving one
Current & Conductors - sites.google.com/site/ncpdhbkhn 9
Current & Current Density (7)
dQ
I=J. d S = − i
∫ dQi
S dt →∫ ( ∇ .J ) dv =−
V dt
∫J.Sd= ∫ ( ∇ . J ) dv (div. theo.)
S V Q= ρ dv
i∫V v
d ∂ρ
→( ∇ .J ) dv =− ρ dv = − v
∫ ∫ v ∫ dv
Vdt V V ∂t
∂ρ ∂ρ
→( ∇.J ) ∆v = −v ∆ v → ∇.J = − v
∂t ∂t
Current & Conductors - sites.google.com/site/ncpdhbkhn 10
Ex. 2 Current & Current Density (9)
e−t
Consider the current density J = a A/m2.
r r
∂ρ e−t
−v = ∇ = ∇
.J . a r
∂t r
∂ ∂ ∂
12 1 1 Dϕ
∇=.D (r D ) + (sin)θ Dθ +
rrr2 ∂r sinθθ ∂ r sin θϕ ∂
∂ρ ∂ −t − t −t − t
→−=v 1 2 e = e →=−ρ e + =+ e
2r 2 v ∫ 2dtKr() 2 Kr ()
∂trr ∂ r r r r
Suppose ρv → 0 as t → ∞, then K(r) = 0
e−t J e−t e − t
→ρ = C/ m3 →==vr = r m/ s
v 2 r ρ 2
r v r r
Current & Conductors - sites.google.com/site/ncpdhbkhn 11
Current & Conductors
1. Current & Current Density
2. Metallic Conductors
3. Conductor Properties & Boundary Conditions
4. The Method of Images
5. Semiconductors
Current & Conductors - sites.google.com/site/ncpdhbkhn 12
Metallic Conductors (1)
• The quantum theory
• Valence band, conduction band, energy gap
• Metallic conductors: no energy gap between valence &
conduction bands
• In metallic conductors:
F = – eE
Current & Conductors - sites.google.com/site/ncpdhbkhn 13
Metallic Conductors (2)
F = – eE
• In free space, the electron will accelerate
• In conductors, the electron will soon obtain a constant
average velocity:
vd = – µeE
2
• µe: the mobility of an electron, m /Vs, positive
• Ex.: Al: 0.0012; Cu: 0.0032; Ag: 0.0056
• J = ρvv
• → J = – ρe µeE
Current & Conductors - sites.google.com/site/ncpdhbkhn 14
Metallic Conductors (3)
J = – ρe µeE
• ρe : free-electron charge density, negative
• J is in the same direction as E
J = σE
• σ : conductivity, S/m
• Ex.: Al: 3.82 10 7; Cu: 5.80 10 7; Ag: 6.17 10 7
σ = – ρe µe
Current & Conductors - sites.google.com/site/ncpdhbkhn 15
Metallic Conductors (4) Uniform E
E
J S
I σ
I= J. d S = JS →J =
∫S S Uniform J
a L
V= − E. d L
ab ∫b
a V I L
= − E.∫ d L →σ =→=V I
b L Sσ S
= −E.L = E.L →V = RI
ba ab L
R = (Ohm’s law)
→V = EL V σ S
→J = σ
J= σ E L − a
V ∫ E.d L
R =ab = b
I σE.d S
∫S
Current & Conductors - sites.google.com/site/ncpdhbkhn 16
Metallic Conductors (5)
dL
R = i
i σ
iS i
N N
dL th
→RR = = i i cell dL i
∑i ∑σ
i=1 i = 1 iS i
dL
→R =
∫ σ S
Current & Conductors - sites.google.com/site/ncpdhbkhn 17
Ex. Metallic Conductors (6)
A material with conductivity σ = m/ρ + k, where m & k are constants, fills the space
between two concentric, cylindrical conductors of radii a & b. L is the length of each
conductor. Find the resistance of the material?
dL
R = i
i σ
iS i
= ρ
dLi d
b dρ 1 kb+ m
→R =∫ = ln
m a (kρ+ m )2 π L 2 π Lk ka + m
σ = + k
i ρ
= πρ
Si 2 L
Current & Conductors - sites.google.com/site/ncpdhbkhn 18
Current & Conductors
1. Current & Current Density
2. Metallic Conductors
3. Conductor Properties & Boundary Conditions
4. The Method of Images
5. Semiconductors
Current & Conductors - sites.google.com/site/ncpdhbkhn 19
Conductor Properties & Boundary Conditions (1)
• Given some electrons in the interior of a conductor
• They will begin to accelerate away from each other, until
they reach the surface of the conductor
• Characteristic 1: the charge density inside a conductor is
zero, the exterior surface has a surface charge density
• Within a conductor: no charge → no current → no
electric field intensity (Ohm)
• Characteristic 2: the electric field intensity within the
conductor is zero
Current & Conductors - sites.google.com/site/ncpdhbkhn 20
Conductor Properties & Boundary Conditions (2)
EN E
D ∆S a ∆w b
∆h
∆h ∆h
D c
∫ E.d L = 0 N d ∆w Et
Dt Conductor
b c d a
→ + + + = 0
∫a ∫ b ∫ c ∫ d ∆h ∆ h
→∆−()EwE ++0 E = 0
t Nb,at2 Na ,at 2
Ewithin conductor = 0 ∆h → 0
→ ∆ = → = → =ε = → = =
Et w 0 Et 0 Dt0 E t 0 Dt E t 0
D.d S = Q →+∫ ∫ + ∫ = Q
∫S topbottom sides → ∆= =ρ ∆
DSQN S S
= ∆ = =
∫ DN S ; ∫ 0; ∫ 0 → =ρ = ε
top bottom sides DN S0 E N
Current & Conductors - sites.google.com/site/ncpdhbkhn 21
Conductor Properties & Boundary Conditions (3)
EN E
D ∆S a ∆w b
= = ∆h
Dt E t 0 ∆h ∆h
D
N d ∆w c Et
=ε = ρ
DN0 E N S
Dt Conductor
x
V= −E. d L = 0
xy ∫y
Characteristics of conductors in static field:
1. The static EFI inside a conductor is zero
2. The static EFI at the surface of a conductor is
everywhere directed normal to that surface
3. The conductor surface is an equipotential surface
Current & Conductors - sites.google.com/site/ncpdhbkhn 22
Conductor Properties & Boundary Conditions (4)
Ex.
Given V = x2 – 10 yz V & P(2, 1, 2) lies on a conductor – free space
boundary. Find V, E, D, ρS at P, & the equation of the conductor surface.
=2 − ×× =− →− =2 −
VP 2 10 1 2 16 V 16x 10 yz
= −∇ = −∇2 − =− + +
E V (x 10 yz ) 2xax 10 z a y 10 y a z V/m
→ =− + +
EP( 2x a x 10 z a y 10 y a z )
x=2, y = 1, z = 2
=− + +
40ax 20 a y 10 a z V/m
=ε = ×−12 −+ + 2
DEPP0 8.854 10 ( 40 aaa xyz 20 10 ) nC/ m
ρ =
S, PD N
== ×−12 2 ++= 2 2 2
DN, PD P 8.854 10 40 20 10 406 pC/m
→ρ = 2
S, P 406 pC/m
Current & Conductors - sites.google.com/site/ncpdhbkhn 23
Current & Conductors
1. Current & Current Density
2. Metallic Conductors
3. Conductor Properties & Boundary Conditions
4. The Method of Images
5. Semiconductors
Current & Conductors - sites.google.com/site/ncpdhbkhn 24
The Method of Images (1)
+ Q + Q
Equipotential surface, V = 0 Equipotential surface, V = 0
– Q
• Dipole: the plane between the 2 charges is zero potential
• That plane can be represented by a vanishingly thin conducting
plane, infinite in extent
• → the dipole can be substituted for a system of a charge and a
conducting plane, & then the fields above the conducting plane
obtain equivalence
Current & Conductors - sites.google.com/site/ncpdhbkhn 25
The Method of Images (2)
+ Q + Q
Equipotential surface, V = 0 Equipotential surface, V = 0
– Q
+ Q + Q
Equipotential surface, V = 0 Equipotential surface, V = 0
– Q
Current & Conductors - sites.google.com/site/ncpdhbkhn 26
Ex. 1 The Method of Images (3)
ρL ρL
+ 1 + 1
– 5 – 5
Equipotential surface, V = 0 Equipotential? surface, V = 0
1. Coulomb’ s law
+ 5
2. Gauss’ law – 1
3. Laplace’s equation
& E = –sV – ρL
Current & Conductors - sites.google.com/site/ncpdhbkhn 27
P(x, y, z)
Ex. 2 The Method of Images (4)
Q
Given Q at (0, 0, d). Find the potential & EFI at P ? d
=Q = Q
V+Q
4πε R πε 2+ 2 + − 2 Equipotential surface, V = 0
0 1 40 x y ( zd )
− −
=Q = Q P(x, y, z)
V−Q R
4πε R πε 2+ 2 + + 2 1
0 2 40 x y ( zd ) Q
d R2
Q 1 1 d
V = −
4πε 22 222 2 –Q
0 xy++−() zd xy +++ () zd
Q xx yy zdzd+ −
E=−∇=−V − aa + − + − a
πε 33 x 33 y 33 z
4 0 RR21 RR 21 RR 21
Current & Conductors - sites.google.com/site/ncpdhbkhn 28
y
Ex. 3 The Method of Images (5) 5 nC
2
Find the potential at P ?
1 P
=2 + 2 =
R1 1 1 1.41 0 1 2 x
=2 + 2 = y
R2 3 1 3.16 –5 nC 5 nC
2
R1
R
=2 + 2 = 1 2 P
R3 3 3 4.24
0 R3 1 2 x
R =12 + 3 2 = 3.16
4 R4
–5 nC
−
510× 9 1 1 1 1
V = −+−= 14.03 V 5 nC
P πε
4 0R 1 R 2 R 3 R 4
Current & Conductors - sites.google.com/site/ncpdhbkhn 29
z
Ex. 4 The Method of Images (6) Q
A point charge Q at a distance d from a center of a grounded
conducting sphere of radius a. Find the image charge? y
Problem: find q & b x
=−θ2 + θ 2 =+− 22 θ
R1 ( dR cos ) ( R sin ) RdRd 2 cos
=θ −+2 θ 2 =+− 22 θ z
R2 (cos R bR ) (sin) RbRb 2 cos Q
R1 P
Q q Q mQQ1 m
V =− =− = − R
P πε πε πε πε πε d q 2
4R1 4 R 2 4 R 1 4 R 2 4 RR 12 R c
b θ
a a
m= → q =− Q 0 x
1 m d d a
R= a → V = 0 → − = 0 →
P R R a2
1 2 b =
d
Current & Conductors - sites.google.com/site/ncpdhbkhn 30
Current & Conductors
1. Current & Current Density
2. Metallic Conductors
3. Conductor Properties & Boundary Conditions
4. The Method of Images
5. Semiconductors
Current & Conductors - sites.google.com/site/ncpdhbkhn 31
Semiconductors
• Germani, silicon
– –
• Conductivity of conductors: J – –
E – –
σ = – ρe µe – –
• Conductivity of semiconductors:
σ = – ρe µe + ρh µh
• h: hole –
J –
E –
• At 300K: – –
2 2
– µe, Germani : 0,36 m /Vs; µh, Germani : 0,17 m /Vs
2 2
– µe, Silicon : 0,12 m /Vs; µh, Silicon : 0,025 m /Vs
Current & Conductors - sites.google.com/site/ncpdhbkhn 32
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_vi_current_con.pdf