Bài giảng Engineering electromagnetic - Chapter V: Energy & Potential - Nguyễn Công Phương
Energy Density in the Electrostatic Field (1)
• Carrying a positive charge (1) from infinity into the field
of another fixed positive charge (2) needs work
• If the charge 1 is held near the charge 2, it has a potential
energy
• If then the charge 1 is released, it will accelerate away
from the charge 2, acquiring kinetic energy
• Problem: find the potential energy present in a system of
charges
58 trang |
Chia sẻ: linhmy2pp | Lượt xem: 200 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter V: Energy & Potential - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Energy and Potential
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Energy & Potential - sites.google.com/site/ncpdhbkhn 2
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 3
Moving a Point Charge in an Electric Field (1)
• Moving a charge Q a distance dL in an E, the force on Q
arising from the electric field:
FE = QE
• The component in the direction dL:
FEL = F.aL = QE.aL
• aL: a unit vector in the direction of dL
• → the force must be applied:
Feff = – QE.aL
• The expenditure of energy:
dW = – QE.aLdL = – QE.dL
Energy & Potential - sites.google.com/site/ncpdhbkhn 4
Moving a Point Charge in an Electric Field (2)
• The expenditure of energy required to move Q in E:
dW = – QE.dL
• dW = 0 if:
– Q = 0, E = 0, dL = 0, or
– E is perpendicular to dL
• The work needed to move the charge a finite distance:
final
W= − QE. d L
∫init
Energy & Potential - sites.google.com/site/ncpdhbkhn 5
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 6
EL6 A
The Line Integral (1) ∆L6
EL5
∆L E
EL4 5
E
EL3 ∆L4
E
∆L3
EL2 E
∆L2
E
∆L1 final
EL1 = −
W Q∫ EL dL
= + ++ E init
W dW1 dW 2... dW 6 B
=− ∆− ∆−− ∆ = − QE.L
QEL11. L QE L 22 . L ... QE L 66 . L BA
=− ∆− ∆−− ∆ (uniform E)
QQQELELEL11. 22 . ... 66 .
= == =
EEEE1 2... 6
→WQ =−E.( ∆ L +∆ L + ... +∆ L )
1 2 6 →WQ = − E.L
∆ +∆ + +∆ = BA
LLLL1 2... 6 BA
Energy & Potential - sites.google.com/site/ncpdhbkhn (uniform E) 7
EL6 A
The Line Integral (2) ∆L6
E
final L5
=− =− E ∆L5 E
W Q EL dL QEL. BA (uniform E) L4
∫init E
EL3 ∆L4
E
∆L3
EL2 E
final ∆L2
W= − QEL. d E
∫init
∆L1
EL1
E
Uniform E B
A = −
→W = − QE. d L QE.LBA
∫B
Energy & Potential - sites.google.com/site/ncpdhbkhn 8
Ex. 1 The Line Integral (3)
Given E = yax + xay + zaz V/m. Find the work needed in carrying 2 C from
B(1; 0; 1) to A(0.8; 0.6; 1) along:
a)the shorter arc of the circle x2 + y2 = 1, z = 1; b)the straight-line path from B to A
A
W= − QE. d L
∫B
= + +
dL dx ax dy a y dz a z
→=−A ++ ++
W2 ( yaaaxyz x z ).( dx a x dy a y dz a z )
∫B
x=0.8 y = 0.6 1
=−2ydx − 2 xdy − 2 zdz
∫x=1 ∫ y = 0 ∫ 1
x=0.8 y = 0.6
=−21 −−x2 dx 21 −− y 2 dy 0
∫x=1 ∫ y = 0
0.8 0.6
=−xx1 −+21 sin− x − yy 1 −+ 21 sin − y = − 0.96 J
1 0
Energy & Potential - sites.google.com/site/ncpdhbkhn 9
Ex. 1 The Line Integral (4)
Given E = yax + xay + zaz V/m. Find the work needed in carrying 2 C from
B(1; 0; 1) to A(0.8; 0.6; 1) along:
a)the shorter arc of the circle x2 + y2 = 1, z = 1; b)the straight-line path from B to A
A
W= − QE. d L
∫B
= + +
dL dx ax dy a y dz a z
→=−A ++ ++
W2 ( yaaaxyz x z ).( dx a x dy a y dz a z )
∫B
x=0.8 y = 0.6 1
=−2ydx − 2 xdy − 2 zdz
∫x=1 ∫ y = 0 ∫ 1
y− y
yy− =A B ( xx − ) →y =−3( x − 1)
B− B
xA x B
x=0.8 y = 0.6 y
→=W6∫ (1)2 x −− dx ∫ 1 − dy − 0 = − 0.96 J
x=1 y = 0 3
Energy & Potential - sites.google.com/site/ncpdhbkhn 10
The Line Integral (5)
= + +
dL dx ax dy a y dz a z (Descartes)
=ρ + ρ ϕ + (Cylindrical)
ddL aρ d a ϕ dz a z
= +θ + θ ϕ (Spherical)
dLa drr rd aθ rsin d a ϕ
Energy & Potential - sites.google.com/site/ncpdhbkhn 11
z
Ex. 2 The Line Integral (6)
Find the work needed in carrying the charge Q about a dL
circular path centered at the line charged.
y
ρL
final x
W= − Q∫ EL. d
ρ init
L
E= a ρ
πε ρ final ρ
2 0 → = − L ρ ϕ
W Q∫ aρ. d a ϕ
ddL=ρ aρ + ρ d ϕ a ϕ + dz a init πε ρ
z 2 0
2π ρ
dρ = 0 L
= − Q d ϕaρ. a ϕ
∫0 πε
dz = 0 2 0
o
aρ. a ϕ = 1 × 1 × cos90
ρ 2π
→W = − QL cos90 o d ϕ = 0
πε ∫0
2 0
Energy & Potential - sites.google.com/site/ncpdhbkhn 12
z
Ex. 3 The Line Integral (7)
ρL
Find the work done in carrying a charge Q from ρ = a
to ρ = b.
a y
dL
final x b
W= − Q∫ EL. d
ρ init
L
E= a ρ
πε ρ final ρ
2 0 L
→W = − Qaρ. d ρ a ρ
ddL=ρ a + ρ d ϕ a + dz a ∫init πε ρ
ρ ϕ z 2 0
dϕ = 0
b ρ dρ
= − Q L
dz = 0 ∫a πε ρ
2 0
Qρ b
= − L ln
πε
2 0 a
Energy & Potential - sites.google.com/site/ncpdhbkhn 13
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 14
Potential Difference & Potential (1)
final
W= − QEL. d
∫init
• Potential difference V: work done in moving a unit
positive charge from one point to another in an electric
field: final
Potential difference =V = − QEL. d
∫init
• Potential difference between points A & B:
= − A
VAB E. d L
∫B
• Unit: volt (V, J/C)
Energy & Potential - sites.google.com/site/ncpdhbkhn 15
z
Ex. Potential Difference & Potential (2)
ρL
Find the potential difference between ρ = a & ρ = b.
Work done in carrying Q from a to b: a y
x
Qρ b b
W = − L ln
πε
2 0 a
→ work done in carrying Q from b to a:
Qρ b
W = L ln
πε
2 0 a ρ
→ = L b
Vab ln
W 2πε a
V = 0
ab Q
Energy & Potential - sites.google.com/site/ncpdhbkhn 16
Potential Difference & Potential (3)
A
• Potential difference between points A & B: V= − E. d L
AB ∫B
• No B?
• → potential (absolute potential) at A
• → still need a reference point:
– “ground”
– Infinity
• If the potential at A is VA & that at B is VB, then:
VAB = VA – VB
• (provided VA & VB have the same zero reference point)
Energy & Potential - sites.google.com/site/ncpdhbkhn 17
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 18
The Potential Field of a Point Charge (1)
A B
= − A
VAB E. d L
∫B
rA rB
Q rA Q
= →V = − dr
E2 a r AB ∫ 2
πε rB πε Q
4 0r 4 0r
=
dL dr a r Q 1 1
= − Q
4πε r r →V =
0 A B A πε
4 0rA
→ ∞
rB
Q
V =
πε
4 0r
(Potential field of a point charge)
Energy & Potential - sites.google.com/site/ncpdhbkhn 19
The Potential Field of a Point Charge (2)
Q
V =
πε
4 0r
• The potential at any point distant r from a point charge Q
• The zero reference is the potential at infinite radius
• Q/4 πε 0r (J) must be done in carrying a 1-C charge from
infinity to any point r meters from the charge Q
Q Q
• If = C →VC = +
πε 1 πε 1
4 0rB 4 0r
• The potential difference does not depend on C1
Energy & Potential - sites.google.com/site/ncpdhbkhn 20
The Potential Field of a Point Charge (3)
Q
V =
πε
4 0r
• The potential field of a point charge
• A scalar field, & no unit vector
• Equipotential surface : a surface composed of all those
points having the same value of potential
• No work is required in moving a charge around on an
equipotential surface
• The equipotential surfaces in the potential field of a
point charge are spheres centered at the point charge
Energy & Potential - sites.google.com/site/ncpdhbkhn 21
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 22
The Potential Field of a System of Charges (1)
Q Q2 r – r
V (r ) = 1 2
πε − r2
4 0r r 1 r – r1
Q1
QQ
V (r ) =1 + 2 r
πε− πε − r1
40rr 1 4 0 rr 2
Origin
QQ Q n Q
V (r )=1 + 2 ++ ... n = m
πε− πε − πε − ∑ πε −
401rr 4 02 rr 4 0 rr n m=1 4 0 r r m
=ρ ∆
Qm v v m
ρ()r∆v ρ () r ∆ v ρ () r ∆ v
→=V (r )v11 + v 22 ++ ... vnn
πε− πε − πε −
401rr 4 02 rr 4 0 rr n
Energy & Potential - sites.google.com/site/ncpdhbkhn 23
The Potential Field of a System of Charges (2)
ρ()r∆v ρ () r ∆ v ρ () r ∆ v
V (r )=v11 + v 22 ++ ... vnn
πε− πε − πε −
401rr 4 02 rr 4 0 rr n
n → ∞
ρ (r ')dv '
→V (r ) = v
∫V πε −
40 r r '
ρ (r ')dL '
V (r ) = L
∫ πε −
40 r r '
ρ (r ')dS '
V (r ) = S
∫S πε −
40 r r '
Energy & Potential - sites.google.com/site/ncpdhbkhn 24
The Potential Field of a System of Charges (3)
Ex. 1
z
Find the potential on the z axis.
(0, 0, z)
ρ (r ')dL '
V (r ) = L r r− r ' =a2 + z 2
∫ 4πε r− r '
0 ρ = a
dL'= ad ϕ ' y
= ϕ ' r’
rz a z 2 2 dL'= ad ϕ '
→−r r ' =a + z x ρL
r' = a a ρ
2π ρad ϕ ' ρ a
→V (r ) = ∫ L = L
0 πε 2+ 2 ε 2+ 2
4 0 a z 2 0 a z
Energy & Potential - sites.google.com/site/ncpdhbkhn 25
The Potential Field of a System of Charges (4)
For a zero reference at infinity, then:
• The potential due to a single point charge: the work done in carrying a
unit positive charge from infinity to the point at which we desire the
potential, this work does not depend on the path chosen between these
two points
• The potential field due to a number of point charges is the sum of the
individual potential fields due to each charge
A
• The expression for potential: V= − E. d L
A ∫∞
A
• The potential difference: VVV= − =− E. d L
AB A B ∫B
• For a static field: ∫ E.d L = 0
Energy & Potential - sites.google.com/site/ncpdhbkhn 26
The Potential Field of a System of Charges (5)
Ex. 2 z
Investigate the uniform line charge density ρL of finite L
= ρ
length 2 L centered on the z axis. z ' dQL dz '
Q R
V = ρ ϕ
point charge πε P( , ,) z y
4 0r
ρ
dQ ρ dz ' ϕ
→dV = = L
πε πε ρ 2+ − 2 x
4 0R 40 (z z ')
−L
L ρ dz '
→V = L
∫ πε ρ 2+ − 2
−L 40 (z z ')
ρ zL−+ρ 2 +−( zL ) 2
= − L ln
πε ++ρ 2 +− 2
4 0 zL( zL )
Energy & Potential - sites.google.com/site/ncpdhbkhn 27
The Potential Field of a System of Charges (6) P
Ex. 3 r
Investigate a sphere of radius R has a uniform surface rQP
charge density ρS.
2 ρ dQ
= ρ = ρ θθϕ S R
dQS dS S Rsin d d
dQρ R2 sin θθϕ d d
→dV = = S
4πεr 4 πε r
0QP 0 QP z
2= 2 + 2 − ϕ dS = rsin θdrd φaθ
rQP R r2 rR cos
2
dS = r sin θdθdφar
dr
dS = rdrd θaφ y
rd θ
x
rsin θdφ
Energy & Potential - sites.google.com/site/ncpdhbkhn 28
The Potential Field of a System of Charges (6) P
Ex. 3 r
Investigate a sphere of radius R has a uniform surface rQP
charge density ρS.
2 ρ dQ
= ρ = ρ θθϕ S R
dQS dS S Rsin d d
dQρ R2 sin θθϕ d d
→dV = = S
πε πε
40rQP 4 0 r QP
Rrsin θ d θ
2= 2 + 2 − θ → = θ θ →r =
rQP R r2 rR cos 2rQP dr QP 2 rR sin d QP
dr QP
ρRdr d ϕ
→dV = S QP
πε 2
4 0r ρ R
S ,r> R
r+ R 2π ρRdr d ϕ ε r
→V = S QP = 0
∫r= r − R ∫ ϕ = 0
QP 4πε r ρ R
0 S ,r< R
ε
0
Energy & Potential - sites.google.com/site/ncpdhbkhn 29
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 30
Potential Gradient (1)
• 2 methods to find potential: from electric field intensity
& from charge distribution
• however E & ρv, S, L are often not given
• → problem: finding EFI from potential
• solution: potential gradient
Energy & Potential - sites.google.com/site/ncpdhbkhn 31
∆L
Potential Gradient (2)
θ E
V= − ∫ E. d L
∆V ≐ −E. ∆ L
∆V≐ − E ∆ L cos θ
dV
= − E cos θ
dL
dV
E =(cosθ = − 1)
dL max
Energy & Potential - sites.google.com/site/ncpdhbkhn 32
Potential Gradient (3) V = +90
+80
+70
dV +60
E = +50
aN
dL max +40
P ∆L
• The magnitude of E is given by the E
maximum value of the rate of change
of potential with distance +30
• This maximum value is obtained when +20
the direction of the distance increment +10
is opposite to E, or, in other words, the
direction of E is opposite to the
= − dV
direction in which the potential is E a N
increasing the most rapidly dL max
Energy & Potential - sites.google.com/site/ncpdhbkhn 33
Potential Gradient (4) V = +90
+80
dV +70
= − +60
E a N
+50
dL max
aN
dV dV dV ∆L +40
= →E = − a P
N E
dLmax dN dN
+30
dT +20
Gradient of T = grad T = a
dN N +10
E = − grad V
Energy & Potential - sites.google.com/site/ncpdhbkhn 34
Potential Gradient (5)
E = − grad V
∂V
E = −
x ∂
∂V ∂ V ∂ V x
V= Vxyz(, , ) →=dV dx + dy + dz ∂
∂ ∂ ∂ → = − V
x y z Ey
∂y
dV=−E. d L =− Edx − Edy − Edz
x y z ∂V
E = −
z ∂z
∂ ∂ ∂
→=−V + V + V
E ax a y a z
∂x ∂ y ∂ z
∂V ∂ V ∂ V
→ grad V =a + a + a
∂xx ∂ y y ∂ z z
Energy & Potential - sites.google.com/site/ncpdhbkhn 35
Potential Gradient (6)
∂V ∂ V ∂ V
grad V =a + a + a
∂xx ∂ y y ∂ z z
∂ ∂ ∂ ∂T ∂ T ∂ T
∇=a + a + a →∇=T a + a + a
∂xx ∂ y y ∂ z z ∂xx ∂ y y ∂ z z
→ ∇T = grad T
E = − grad V
→ E = −∇V
Energy & Potential - sites.google.com/site/ncpdhbkhn 36
Potential Gradient (7)
∂V ∂ V ∂ V
∇=V a + a + a (Descartes)
∂xx ∂ y y ∂ z z
∂V1 ∂ V ∂ V
∇=V aρ + a ϕ + a (Cylindrical)
∂ρ ρ ∂ ϕ ∂ z z
∂V1 ∂ V 1 ∂ V
∇=V a + aθ + a ϕ (Spherical )
∂rr r ∂θ r sin θ ∂ ϕ
Energy & Potential - sites.google.com/site/ncpdhbkhn 37
Potential Gradient (8)
∂V ∂ V ∂ V
Gradient: ∇=V a + a + a
∂xx ∂ y y ∂ z z
∂DD∂D ∂
Divergence: ∇=.D x +y + z
∂x ∂ y ∂ z
Energy & Potential - sites.google.com/site/ncpdhbkhn 38
Ex. 1 Potential Gradient (9)
Find the gradient of each of the following functions:
=2 − 3
af)1 2 ay 5 yz
=ρϕ + ρ ϕ
b) f2 6 sin 4 z cos3
1
c) f= + 2 r sinθ cos ϕ
3 r
Energy & Potential - sites.google.com/site/ncpdhbkhn 39
Ex. 2 Potential Gradient (10)
Given a potential field V = x2 – 10 yz (V) & a point P(1, 3, 1). Find
several values at P: VP, EP , the direction of EP , DP , & ρv .
=2 − ××=−
VP 1 10 3 1 29 V
∂ ∂ ∂
= −∇ =−V + V + V =− + +
E V ax a y a z 2xax 10 z a y 10 y a z V/m
∂x ∂ y ∂ z
→ =−× +× +× =− + +
Ep21 a x 101 a y 103 aaaa zxyz 2 10 30V/m
E −2a + 10 a + 30 a
a = p = x y z =−0.063a + 0.32 a + 0.95 a
E, P −2 + 2 + 2 x y z
E p ( 2) 10 30
Energy & Potential - sites.google.com/site/ncpdhbkhn 40
Ex. 2 Potential Gradient (11)
Given a potential field V = x2 – 10 yz (V) & a point P(1, 3, 1). Find
several values at P: VP, EP , the direction of EP , DP , & ρv .
= ε = ×−12 −+ +
DE0 8.854 10 ( 2xax 10 z a y 10 y a z )
=− + + 2
17.71xax 88.54 z a y 88.54 y a z pC/m
ρ = ∇
v .D
∂∂D ∂
=DDx +y + z
∂x ∂ y ∂ z
∂−( 17.71x ) ∂ (88.84 z ) ∂ (88.84 y )
= + + = − 17.71 pC/m3
∂x ∂ y ∂ z
Energy & Potential - sites.google.com/site/ncpdhbkhn 41
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 42
The Dipole (1) z P
θ R1
Q1 1 Q R− R
V = − = 2 1 +Q
πε πε r
401RR 2 4 012 RR
R2
R1≐ R 2 d
− θ y
R2 R 1 ≐ d cos
–Q
Qd cos θ x
→ V =
πε 2 z
4 0r R1
= −∇ θ
E V +Q
∂ ∂ ∂ r
=−V +1 V + 1 V R2
ar aθ a ϕ
∂r r ∂θ r sin θ ∂ ϕ
d
Qd y
E=(2cosθ a + sin θ a θ )
4πε r3 r R− R≐ d cos θ
0 x –Q 2 1
Energy & Potential - sites.google.com/site/ncpdhbkhn 43
The Dipole (2)
Qd
E=(2cosθ a + sin θ a ) z
πε 3 r θ 0,4
4 0r
Qd cos θ 0,6
V =
πε 2 0,8
4 0r
1
Energy & Potential - sites.google.com/site/ncpdhbkhn 44
The Dipole (3) z P
θ R1
+Q
The dipole moment p= Q d r
ar R2
= θ d
d.a r d cos d
y
Qd cos θ
V = –Q
πε 2 x
4 0r
p.a 1r− r '
→V = r = p.
4πε r 2 πε − 2 r− r '
0 40 r r '
r : locates P
r’: locates the dipole center
Energy & Potential - sites.google.com/site/ncpdhbkhn 45
Energy & Potential
1. Moving a Point Charge in an Electric Field
2. The Line Integral
3. Potential Difference & Potential
4. The Potential Field of a Point Charge
5. The Potential Field of a System of Charges
6. Potential Gradient
7. The Dipole
8. Energy Density in the Electrostatic Field
Energy & Potential - sites.google.com/site/ncpdhbkhn 46
Energy Density in the Electrostatic Field (1)
• Carrying a positive charge (1) from infinity into the field
of another fixed positive charge (2) needs work
• If the charge 1 is held near the charge 2, it has a potential
energy
• If then the charge 1 is released, it will accelerate away
from the charge 2, acquiring kinetic energy
• Problem: find the potential energy present in a system of
charges
Energy & Potential - sites.google.com/site/ncpdhbkhn 47
Energy Density in the Electrostatic Field (2)
• (Work to position Q2) = Q2V2, 1
• V2, 1 : the potential at Q2 due to Q1
• An additional charge Q3:
• (Work to position Q3) = Q3V3, 1 + Q3V3, 2
• (Work to position Q4) = Q4V4, 1 + Q4V4, 2 + Q4V4, 3
• Total positioning work = potential energy of field =
= WE = Q2V2, 1 + Q3V3, 1 + Q3V3, 2 + Q4V4, 1 + Q4V4, 2 + +
Q4V4, 3 +
Energy & Potential - sites.google.com/site/ncpdhbkhn 48
Energy Density in the Electrostatic Field (3)
WE = Q2V2, 1 + Q3V3, 1 + Q3V3, 2 + Q4V4, 1 + Q4V4, 2 + Q4V4, 3 +
Q
= 1
QVQ3 3,1 3 Q
4πε R →QV = Q3 = QV
0 13 3 3,1 14πε R 1 1,3
= 0 31
R13 R 31
W = Q V + Q V + Q V + Q V + Q V + Q V +
+ E 1 1, 2 1 1, 3 2 2, 3 1 1, 4 2 2, 4 3 3, 4
WE = Q2V2, 1 + Q3V3, 1 + Q3V3, 2 + Q4V4, 1 + Q4V4, 2 + Q4V4, 3 +
= ++++
2WE QV1 ( 1,2 V 1,3 V 1,4 ...)
+ ++++
QV2( 2,1 V 2,3 V 2,4 ...)
+ ++++
QV3( 3,1 V 3,2 V 3,4 ...)
+...
Energy & Potential - sites.google.com/site/ncpdhbkhn 49
Energy Density in the Electrostatic Field (4)
= ++++ ++++
2WQVVVE 1 ( 1,2 1,3 1,4 ...) QVVV 2 ( 2,1 2,3 2,4 ...)
+ ++++
QV2( 3,1 V 3,2 V 3,4 ...) ...
+ + +=
VVV1,2 1,3 1,4... V 1
+ + +=
VVV2,1 2,3 2,4... V 2
+ + +=
VVV3,1 3,2 3,4... V 3
N
→=1 + + += 1
WE ( QVQVQV11 22 33 ...) ∑ QVk k 1
2 2 k =1 → = ρ
WE∫ v Vdv
2 V
= ρ
Qk v dv
Energy & Potential - sites.google.com/site/ncpdhbkhn 50
Energy Density in the Electrostatic Field (5)
= 1 ρ
WE∫ v Vdv
2 V
st ∇ = ρ
Maxwell’s 1 equation: .D v
→ =1 ∇
WE ∫ ( .D ) Vdv
2 V
∇.(VVVDDD ) ≡ (.) ∇ + .( ∇ )
1
→ =[] ∇ − ∇
WE ∫ .( VDD ) .( Vdv )
2 V
Energy & Potential - sites.google.com/site/ncpdhbkhn 51
Energy Density in the Electrostatic Field (6)
1
=[] ∇ − ∇
WE ∫ .( VDD ) .( V ) dv
2 V
1 1
=∫ ∇.()VDD dv − ∫ .( ∇ V ) dv
2V 2 V
1
∫ ∇.(VD ) dv
2 V
Div. theorem: DSD.d= ∇ . dv
∫S ∫ V
1 1
→∫ ∇.(VdvD ) = ∫ ( Vd D ). S
2V 2 S
→ =1 − 1 ∇
WE ∫( VDSD ). d ∫ .( V ) dv
2 S 2 V
Energy & Potential - sites.google.com/site/ncpdhbkhn 52
Energy Density in the Electrostatic Field (7)
=1 − 1 ∇
WE ∫( VDSD ). d ∫ .( V ) dv
2 S 2 V
Q
V = : 0 with 1/ r
4πε r
0 →1 =
Q 2 (VD ). d S 0
= : 0 with 1/ r ∫S
D2 a r 2
4π r
dS : increases with r2
→ = −1 ∇
WE D.( Vdv ) 1 1
∫V → = = ε 2
2 WE ∫DE. dv ∫ 0 E dv
2V 2 V
E = −∇V (pot. grad)
Energy & Potential - sites.google.com/site/ncpdhbkhn 53
Ex. 1 Energy Density in the Electrostatic Field (8)
Given a coaxial cable, the surface charge density of the outer ρ = a ρ = b
surface of the inner cylinder is ρS . Find its potential energy?
1
Method 1: = ε 2
WE ∫ 0 Edv
2 V
aρ aρ
D=S ( a <ρ < b ) →E = S
ρ ρ ε ρ
0
2
z= Lϕ =2 π ρ = b aρ
→ = 1 ε S
WE 0 dv
∫z=0 ∫ϕ = 0 ∫ ρ = a ε ρ
2 0
dv= ρ d ρ d ϕ dz
2 2 2 2
1 z= Lϕ =2 π ρ = b a ρ πLa ρ b
→W = εS ρρϕ d d dz = S ln
E ∫z=0 ∫ϕ = 0 ∫ ρ = a 0 ε2 ρ 2 ε
2 0 0 a
Energy & Potential - sites.google.com/site/ncpdhbkhn 54
Ex. 1 Energy Density in the Electrostatic Field (9)
Given a coaxial cable, the surface charge density of the outer ρ = a ρ = b
surface of the inner cylinder is ρS . Find its potential energy?
1
Method 2: = ρ
WE∫ v Vdv
2 V
final
= − a
VAB ∫ EL. d → = − ρ
init Va Eρ d
∫b
V = 0 aρ
b E = S
ρ ε ρ
0
a aρ aρ b
→ = − S ρ = S ln
Va ∫ d aρ
b ε ρ ε a → = 1 ρ S b
0 0 WE∫ v ln dv
1 V ε
= ρ 2 0 a
WE∫ v Vdv
2 V
Energy & Potential - sites.google.com/site/ncpdhbkhn 55
Ex. 1 Energy Density in the Electrostatic Field (10)
Given a coaxial cable, the surface charge density of the outer ρ = a ρ = b
surface of the inner cylinder is ρS . Find its potential energy?
1
Method 2: = ρ
WE∫ v Vdv
2 V
aρ
= 1 ρ S b
∫ v ln dv
2 v ε a
ρ t0 t
ρ=S ,a −≤≤+ ρ a , ta≪
v t 2 2
1 zL=ϕ =2 π ρ =+ at / 2 ρ ρ b
→W = S a S ln ρ dddz ρ ϕ
E ∫z=0 ∫ϕ = 0 ∫ ρ =− a t /2 ε
2 t0 a
πLa 2 ρ 2 b
= S ln
ε
0 a
Energy & Potential - sites.google.com/site/ncpdhbkhn 56
Ex. 2 Energy Density in the Electrostatic Field (11)
A metallic sphere of radius 10cm has a surface charge density of 10nC/m 2. Calculate
the electric energy stored in the system.
1
Method 1: = ε 2
WE ∫ 0 Edv
2 V
ρ R2 ρ R2
D.d S = Q →D(4π r2 ) = ρ (4 π R 2 ) →D = S →E = S
∫S total S 2 ε 2
r 0r
2
1 ρ R2
→ = ε S
WE 0 dv
∫V ε 2
2 0r
2− 18
1∞ π2 π (0.1)× 10
= r2 sin θ drd θ d ϕ
∫r=0.1 ∫θ = 0 ∫ ϕ = 0 ε 4
2 0r
= 71.06nJ
Energy & Potential - sites.google.com/site/ncpdhbkhn 57
Ex. 2 Energy Density in the Electrostatic Field (12)
A metallic sphere of radius 10cm has a surface charge density of 10nC/m 2. Calculate
the electric energy stored in the system.
Method 2: ?
Energy & Potential - sites.google.com/site/ncpdhbkhn 58
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_v_energy_poten.pdf