Bài giảng Engineering electromagnetic - Chapter IV: Electric Flux Density, Gauss’ Law & Divergence - Nguyễn Công Phương
Maxwell’s First Equation (2)
• Apply to electrostatic & steady magnetic fields
• The electric flux per unit volume leaving a vanishingly small
volume unit is exactly equal to the volume charge density there
57 trang |
Chia sẻ: linhmy2pp | Lượt xem: 211 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter IV: Electric Flux Density, Gauss’ Law & Divergence - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Electric Flux Density, Gauss’ Law & Divergence
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Electric Flux Density, Gauss’ Law & Divergence 2
Electric Flux Density, Gauss’ Law & Divergence
1. Electric Flux Density
2. Gauss’ Law
3. Divergence
4. Maxwell’s First Equation
5. The Vector Operator s
6. The Divergence Theorem
Electric Flux Density, Gauss’ Law & Divergence 3
Electric Flux Density (1)
• M. Faraday (1837)
• Phenomenon : the total charge on the
outer sphere was equal in magnitude to
the original charge placed on the inner
sphere, regardless of the dielectric
material between the 2 spheres
• Conclusion : there was a “displacement”
from the inner sphere to the outer,
independent of the medium:
Ψ = Q
• Ψ: electric flux
Electric Flux Density, Gauss’ Law & Divergence 4
Electric Flux Density (2) –Q
2 2
Sa = 4 πa (m )
a
Density of the flux at the inner sphere:
Ψ +Q b
= Q
4πa2 4 π a 2
Electric flux density:
Q
D= a
r= a 4π a2 r
Q
D= a
r= b 4πb2 r
Q
D= a
a≤ r ≤ b 4π r 2 r
Electric Flux Density, Gauss’ Law & Divergence 5
Electric Flux Density (3) –Q
= Q
D a r (a < r < b)
4π r 2 +Q b
r
Q
D= a
π 2 r
4 r → = ε
DE0
= Q
E a r ρ
πε 2 (in free space) vdv
4 0r → D= a
∫V π 2 r
(in free space) ρ dv 4 R
E= v a
∫V πε 2 r
4 0R
Electric Flux Density, Gauss’ Law & Divergence 6
Ex. 1 Electric Flux Density (4)
Infinite uniform line charge of 10 nC/m lie along the x & y axes
in free space. Find D at (0, 0, 3).
Electric Flux Density, Gauss’ Law & Divergence 7
Ex. 2 Electric Flux Density (5)
The x & y axes are charged with uniform line charge of 10 nC/m.
A point charge of 20nC is located at (3, 3, 0). The whole system
is in free space. Find D at (0, 0, 3).
Electric Flux Density, Gauss’ Law & Divergence 8
Ex. 3 Electric Flux Density (6)
Given 3 infinite uniform sheets (all parallel to x0y) at z = – 3, z = 2
& z = 3. Their surface charge density are 4 nC/m2, 6 nC/m2 &
–9 nC/m2 respectively. Find D at P(5, 5, 5).
Electric Flux Density, Gauss’ Law & Divergence 9
Electric Flux Density, Gauss’ Law & Divergence
1. Electric Flux Density
2. Gauss’ Law
3. Divergence
4. Maxwell’s First Equation
5. The Vector Operator s
6. The Divergence Theorem
Electric Flux Density, Gauss’ Law & Divergence 10
Gauss' Law (1)
• Generalization of Faraday’s experiment
• Gauss’ law: the electric flux passing through any closed
surface is equal to the total charge enclosed by that
surface
Q
Electric Flux Density, Gauss’ Law & Divergence 11
Gauss' Law (2)
∆Ψ = flux crossing ∆S ∆S
= DScos θ∆S DS, normal
DS θ
= DS .∆S Q
P ∆S
→Ψ=dψ = D . d S
∫ ∫ closed S
surface
Ψ=D.d S = charge enclosed = Q
∫ S S
Electric Flux Density, Gauss’ Law & Divergence 12
Gauss' Law (3)
Ψ= = =
DS .d S charge enclosed Q
∫ S
=
QQ∑ n
= ρ
Q∫ L dL
Q= ρ dS
∫S S
Q= ρ dV
∫V v
D.d S = ρ dv
∫SS ∫ V v
Electric Flux Density, Gauss’ Law & Divergence 13
Gauss' Law (4)
= Q
E a r Q z
4πε r 2 →D = a
0 4π r 2 r
= ε D
DE0 r = a S
dS
→ = Q
DS a r (at the surface) θ
4π a2 Q
x φ y
→ = Q
∫DSS.d ∫ 2 aS r d
S S 4π a
Q
2 2 → = θ θ ϕ
dS = r sin θdθdφ = a sin θdθdφ ∫DS .d S ∫ sin d d
S S 4π
2
→ dS = a sin θdθdφar
Electric Flux Density, Gauss’ Law & Divergence 14
Gauss' Law (5)
= Q θ θ ϕ
∫DS .d S ∫ sin d d z
S S 4π
ϕ=2 π θπ = Q r = a DS
= ∫ ∫ sin θd θ d ϕ dS
ϕ=0 θ = 0 4π
π
2π Q Q θ
=( − cosθ ) d ϕ
∫0 π x φ y
4 0
2π Q
= ∫ dϕ
0 2π
= Q
Electric Flux Density, Gauss’ Law & Divergence 15
Ex. 1 Gauss' Law (6)
Given a point charge 1 nC at (2, 0, 3) & another point charge 2 nC at
(4, – 5, 6). Find the total electric flux leaving the enclosed surface
formed by the six planes x, y, z = ± 8.
Electric Flux Density, Gauss’ Law & Divergence 16
Gauss' Law (7)
• Coulomb’ law is to find E [= f(Q)]
• Sometimes it is difficult to find E using Coulomb’s law
• Gauss may find D (→ E) for a given Q
Q= D. d S
∫S S
• The solution is easy if we are able to find a closed
surface satisfying 2 conditions:
– DS is everywhere either normal or tangential to the closed
surface, so that DS.dS becomes DSdS or zero, respectively
– On that portion of that surface for which DS.dS ≠ 0, DS = const
• (Gaussian surface)
Electric Flux Density, Gauss’ Law & Divergence 17
z
Gauss' Law (8)
E = ?
ρL L
D= Dρ a ρ ; Dρ = f (ρ )
y
Q= D. d S x ρ
∫cylinder S
= + +
DS dS0 dS 0 dS
∫sides ∫ top ∫ bottom
=ϕ = π
= z L 2 ρ ϕ = πρ → = = Q
DS d dz DS 2 L DDS ρ
∫z=0 ∫ ϕ = 0 2πρ L
= ρ
QL L
ρ ρ
→D = L →E = L
ρ πρ ρ πε ρ
2 2 0
Electric Flux Density, Gauss’ Law & Divergence 18
Gauss' Law (9) ρ = a ρ = b
2 coaxial cylindrical conductors. The outer surface
of the inner cylinder has a ρS .
= πρ
Q DS 2 L
(total charge of a right circular cylinder of L & ρ (a < ρ < b))
z= L ϕ = 2 π
Q=ρϕ ad dz = 2 πρ aL
∫z=0 ∫ ϕ = 0 S S
(total charge of the inner cylinder of length L)
aρ aρ
→D = S D=S a (a <ρ < b )
S ρ ρ ρ
ρ==Q ρ S = ρπ.2 aa .1 = 2 πρ
Ll=1 SS l = 1 s
ρ
L
→ D= a ρ
2πρ
Electric Flux Density, Gauss’ Law & Divergence 19
Gauss' Law (10) ρ = a ρ = b
= −
QQouter cylinder innercylinder
= π ρ
Qouter cylinder2 bL S ,outer cylinder
= π ρ
Qinnercylinder2 aL S ,innercylinder
→ρ = − a ρ
S,outer cylinderb S ,inner cylinder
Electric Flux Density, Gauss’ Law & Divergence 20
Gauss' Law (11) ρ = a ρ = b
R
Ψ = + = = π
R, R> b QQ outer cylinder inner cylinder 0 DS, R 2 RL
→ =
DS, R 0
The coaxial cable/capacitor has no external field & there is no field within
the inner cylinder
Electric Flux Density, Gauss’ Law & Divergence 21
Ex. 2 Gauss' Law (12)
Consider a coaxial cable of 1-m length, its inner radius is 1mm, the outer one is
4mm. Conductors are separated by air. The total charge on the inner cylinder is
40nC. Find charge density on each conductor, E & D.
Q 40× 10 −9
ρ = inner cylinder = = 6.37µ C/m 2
S,inner cylinder 2πaL 2π × 10−3 × 1
Q −40 × 10 −9
ρ = outer cylinder = = − 1.59µ C/m 2
S ,outer cylinder 2πbL 2π × 4 × 10−3 × 1
aρ ×−3 × × − 6
= S, inner cylinder =1 10 6.37 10 = 6.37 2
Dρ − − nC/m
103<ρ < 4.10 3 ρ ρ ρ
D × −9
= ρ =6.37 10 = 719 2
Eρ − − − V/m
103<ρ < 4.10 3 ε × 12 ρ ρ
0 8.854 10
Electric Flux Density, Gauss’ Law & Divergence 22
D
Gauss' Law (13) z 0
• The application of Gauss’ ∆z
law (to find D) needs a ∆x
∆y
gaussian surface
y
• Problem: hard to find such x
surface
• Solution : choose a very D = D0 = Dx0ax + Dy0ay + Dz0az
small closed surface
(approaching zero)
Electric Flux Density, Gauss’ Law & Divergence 23
D
Gauss' Law (14) z 0
Q= DS. d ∆z
∫ S
S ∆x
∆y
x y
DS.d = + + + + +
∫S ∫∫∫∫∫∫frontback left right top bottom
Because the closed surface is very small, D is almost
constant over the surface
∆ ∆ ∆ ∆ ∆
≐ DSfront. front ≐ D. y z a ≐ Dx,front y z
∫front front x
Electric Flux Density, Gauss’ Law & Divergence 24
D
Gauss' Law (15) z 0
∆ ∆
≐ Dx,front y z ∆z
∫front
∆x
∆y
∆x
+ × (rate of change of D with x)
DDx,front ≐ x 0 x y
2 x
∆ ∂
x Dx ∂
+ Dx
≐ Dx0
2 ∂x ∂x
∆x
∆x ∂ D
→ +x ∆∆ D0 2
∫ ≐ Dx0 y z
front 2 ∂x
Electric Flux Density, Gauss’ Law & Divergence 25
D
Gauss' Law (16) z 0
∆ ∂
+x Dx ∆ ∆
∫ ≐ Dx0 y z ∆z
front 2 ∂x
∆x
∆y
∆ ≐ −∆ ∆ y
≐ Dback. S back Dback .(y z a x ) x
∫back
− ∆ ∆
≐ Dx, back y z
∆x ∂ D
DD≐ − x
x,back x 0 2 ∂x
∆ ∂
→ − +x Dx ∆ ∆
∫ ≐ Dx0 y z
back 2 ∂x
Electric Flux Density, Gauss’ Law & Divergence 26
Gauss' Law (17)
∆ ∂
+x Dx ∆ ∆
∫ ≐ Dx0 y z
front 2 ∂x
∆ ∂
−+x Dx ∆∆
∫ ≐ Dx0 y z
back 2 ∂x
∂D
→∫ + ∫ ≐ x ∆x ∆ y ∆ z
front back ∂x
∂D
∫+ ∫ ≐ y ∆x ∆ y ∆ z
right left ∂y
Similarly:
∂D
∫+ ∫ ≐ z ∆x ∆ y ∆ z
top bottom ∂z
Electric Flux Density, Gauss’ Law & Divergence 27
Gauss' Law (18)
∂D
∫+ ∫ ≐ x ∆x ∆ y ∆ z
front back ∂x
∂D
∫+ ∫ ≐ y ∆∆∆x y z
right left ∂y
∂D
∫+ ∫ ≐ z ∆x ∆ y ∆ z
top bottom ∂z
DS.d = + + + + +
∫S ∫∫∫∫∫∫frontback left right top bottom
∂
∂DDDy ∂
→∫ DS.d≐ x + + z ∆ xyz ∆ ∆
S ∂x ∂ y ∂ z
Electric Flux Density, Gauss’ Law & Divergence 28
D
Gauss' Law (19) z 0
∂
∂DDDy ∂ ∆z
D.d S ≐ x + +z ∆ xyz ∆ ∆
∫S ∂ ∂ ∂ ∆x
x y z ∆y
∆ = ∆ ∆ ∆
v xyz x y
∂
∂DDDy ∂
→∫ D.d S ≐ x + +z ∆ v
S ∂x ∂ y ∂ z
∂∂D ∂
DDx+y + z × ∆
Qenclosed in ∆v ≐ v
∂x ∂ y ∂ z
Electric Flux Density, Gauss’ Law & Divergence 29
Ex. 3 Gauss' Law (20)
Find the approximate value for the total charge inclosed in an incremental volome
– 10 3 – x – x 2
of 10 m located at the origin. Given D = e sin yax – e cos yay + 2 zaz C/m .
∂∂D ∂
DDx+y + z ×∆
Qenclosed in ∆v ≐ v
∂x ∂ y ∂ z
∂D − ∂D
x = − ex sin y →x = 0
∂ ∂
x x x=0
∂
∂D Dy
y = e−x sin y → = 0
∂ ∂
y y y=0
∂D
z = 2
∂z
→( ++) −10 =
Qenclosed in ∆v ≐ 0 0 2 10 0.2 nC
Electric Flux Density, Gauss’ Law & Divergence 30
Ex. 4 Gauss' Law (21)
dE
A sphere of radius R has a uniform surface charge 1
density ρ . Find E at P?
S P
= ρ = ρ2 θθϕ α
dQ1S dS 1 S Rsin d d r
θ
dS = rsin θdrd φaθ ρ dQ 1
z S R
2
dS = r sin θdθdφar
dr
dS = rdrd θaφ y
rd θ
x rsin θdφ
Electric Flux Density, Gauss’ Law & Divergence 31
Ex. 4 Gauss' Law (21)
dE1
A sphere of radius R has a uniform surface charge (Method 1)
density ρ . Find E at P?
S P
= ρ = ρ2 θθϕ α
dQ1S dS 1 S Rsin d d r
dQ
dE = 1 cos α
1 πε 2 θ
4 0RQ P ρ dQ 1
1 S R
ρR2 sin θθϕ d d
= S cos α
4πε R2
0 Q1 P
ρ2 θθϕ− θ
=S Rsin dd × rR cos
4πε R2 2+ 2 − θ
0 Q1 P r R2 rR cos
π π
2 ρR2 sin θ ( rR− cos θθϕ ) dd
→E = S = ???
P ∫ ∫ πε2+ 2 − θ 3/2
ϕ=0 θ = 0 40 (r R 2cos) rR
Electric Flux Density, Gauss’ Law & Divergence 32
Ex. 4 Gauss' Law (22) dE
dE1
A sphere of radius R has a uniform surface charge (Method 2)
density ρS. Find E at P? dE
dQ P 2
2 α
ε = r
0E.d S Q
∫ S
θ
ε= ε π 2 dQ
0E.d S 0 EPr (4) r ρ 1
∫ S S R
= ρ π 2
QS (4 R )
→ε π2 = ρπ 2
0EPr(4 r ) S (4 R )
ρ R2
→E =S , r > R
Pr ε 2
0r
Electric Flux Density, Gauss’ Law & Divergence 33
Gauss' Law (23)
Ex. 5 dE
An infinitely long cylinder of radius a has a ρ
S
uniform surface charge density ρS. Find E? dE1
dE2
ε =
0E.d S Q
∫ S
ρ
ε= ε π L2
0E.d S 0 Er (2) rL
∫ S
ρ
L1
Q= ρ(2 π aL )
S a
→ε π = ρπ
0Er(2 rL ) S (2 aL )
ρ a
→E =S , r > a
r ε
0r
Electric Flux Density, Gauss’ Law & Divergence 34
Electric Flux Density, Gauss’ Law & Divergence
1. Electric Flux Density
2. Gauss’ Law
3. Divergence
4. Maxwell’s First Equation
5. The Vector Operator s
6. The Divergence Theorem
Electric Flux Density, Gauss’ Law & Divergence 35
Divergence (1)
∂
∂D Dy ∂D
∫ D.d S = Q≐ x ++ z ∆ v
S ∂x ∂ y ∂ z
∂ ∂ ∂ D.d S
D Dy D ∫ Q
→++xz ≐ S =
∂∂∂xyz ∆ v ∆ v
∂∂ ∂ D.d S
DDDy ∫ Q
→++=xz lim S = lim
∂∂∂xyz ∆→v0 ∆ v ∆→ v 0 ∆ v
∂∂ ∂ A.d S
AAAy ∫
→x + +z = lim S
∂∂∂xyz ∆v → 0 ∆ v
∫ A.d S
Divergence of A=divA = lim S
∆v → 0 ∆v
Electric Flux Density, Gauss’ Law & Divergence 36
Divergence (2)
∫ A.d S
Divergence of A =divA = lim S
∆v → 0 ∆v
• Definition : the divergence of the vector flux density A is
the outflow of flux from a small closed surface per unit
volume as the volume shrinks to zero
• Divergence is an operation which is performed on a
vector, but the result is a scalar
• Divergence only tells us how much flux is leaving a
small volume (on a per-unit-volume basis), not direction
Electric Flux Density, Gauss’ Law & Divergence 37
Divergence (3)
∫ A.d S
Divergence of A =divA = lim S
∆v → 0 ∆v
∂D ∂D ∂D
div D =x +y + z (Descartes)
∂x ∂ y ∂ z
∂ ∂D ∂
1 1 ϕ Dz
divD = (ρDρ ) + + (Cylindrical)
ρρ∂ ρϕ ∂ ∂ z
∂ ∂ ∂
12 1 1 Dϕ
divD = (r D ) + (sinθ Dθ ) + (Spherical)
rrr2 ∂r sinθθ ∂ r sin θϕ ∂
Electric Flux Density, Gauss’ Law & Divergence 38
Ex. 1 Divergence (4)
–x –x
Find divergence at the origin, given D = e sin yax – e cos yay + 2 zaz
C/m2.
Electric Flux Density, Gauss’ Law & Divergence 39
Ex. 2 Divergence (5)
Find the divergence of the following vectors:
=2 3 + +
a)Axy z ( aaax y z )
z
b)A=ρ cos ϕ a + sin ϕ a
ρ ρ z
=2 θ ϕ + +
c)Ar sincos( aaar θ ϕ )
Electric Flux Density, Gauss’ Law & Divergence 40
Electric Flux Density, Gauss’ Law & Divergence
1. Electric Flux Density
2. Gauss’ Law
3. Divergence
4. Maxwell’s First Equation
5. The Vector Operator s
6. The Divergence Theorem
Electric Flux Density, Gauss’ Law & Divergence 41
Maxwell’s First Equation (1)
∫ D.d S Q
D.d S = Q →S =
∫S ∆v ∆ v
∫ D.d S Q
→lim S = lim
∆→v0∆v ∆→ v 0 ∆ v
D.d S Q
= ∫S = ρ
divD lim lim v
∆v → 0 ∆v ∆v → 0 ∆v
→ = ρ Maxwell’s first equation
div D v
Electric Flux Density, Gauss’ Law & Divergence 42
Maxwell’s First Equation (2)
= ρ
div D v
• Apply to electrostatic & steady magnetic fields
• The electric flux per unit volume leaving a vanishingly small
volume unit is exactly equal to the volume charge density there
Electric Flux Density, Gauss’ Law & Divergence 43
Ex. Maxwell’s First Equation (3)
Find ρv of the region about a point charge Q located at the origin.
Q
D= a
4π r 2 r
∂ ∂ ∂
12 1 1 Dϕ
divD = (r D ) + (sinθ Dθ ) +
rrr2 ∂r sinθθ ∂ r sin θϕ ∂
DDθ=0, ϕ = 0
1 ∂ Q
→divD =r 2 = 0
r2∂ r4π r 2 →ρ =
v 0
= ρ
div D v
Electric Flux Density, Gauss’ Law & Divergence 44
Electric Flux Density, Gauss’ Law & Divergence
1. Electric Flux Density
2. Gauss’ Law
3. Divergence
4. Maxwell’s First Equation
5. The Vector Operator s
6. The Divergence Theorem
Electric Flux Density, Gauss’ Law & Divergence 45
∇(1)
∂ ∂ ∂
∇=a + a + a
∂xx ∂ y y ∂ z z
∂ ∂ ∂
∇= ++ ++
.D aaax y z . ()DDD xx aaa yy zz
∂x ∂ y ∂ z
∂ ∂ ∂
=()DDD + () + ()
∂xx ∂ y y ∂ z z
∂D ∂D ∂D
=x +y + z = div D
∂x ∂ y ∂ z
∂D ∂D ∂D
→ divDD=∇= . x +y + z
∂x ∂ y ∂ z
Electric Flux Density, Gauss’ Law & Divergence 46
∇(2)
Ex.
– x – x 2
Given D = e sin yax – e cos yay + 2 zaz C/m , find ∇.D?
Electric Flux Density, Gauss’ Law & Divergence 47
Electric Flux Density, Gauss’ Law & Divergence
1. Electric Flux Density
2. Gauss’ Law
3. Divergence
4. Maxwell’s First Equation
5. The Vector Operator s
6. The Divergence Theorem
Electric Flux Density, Gauss’ Law & Divergence 48
The Divergence Theorem (1)
• Applies to any vector field for which the appropriate partial
derivatives exist
DS.d= Q
∫S
= ρ → = =ρ = ∇
Q dv DSD.d Qv dv . dv
∫V v ∫S ∫ V ∫ V
∇.D = ρ
v → DSD.d= ∇ . dv
∫S ∫ V
• Theorem: the integral of the normal component of any vector field
over a closed surface is equal to the integral of the divergence of
this vector field throughout the volume enclosed by the closed
surface
Electric Flux Density, Gauss’ Law & Divergence 49
z
3
Ex. The Divergence Theorem (2)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: x
D.d S = + ++ ++
∫S ∫∫∫∫∫∫frontback left right top bottom
z=3 y = 2 z=3 y = 2
= D.(dydz a ) = D dydz
∫front ∫z=0 ∫ y = 0 x=1 x ∫z=0 ∫ y = 0 x x=1
D=(4 xy ) = 4 y
x x=1 x = 1
z=3 y = 2 z=3
→ = 4 ydydz = 8dz = 24 C
∫front ∫z=0 ∫ y = 0 ∫z=0
Electric Flux Density, Gauss’ Law & Divergence 50
z
3
Ex. The Divergence Theorem (3)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: x
D.d S = + ++ ++
∫S ∫∫∫∫∫∫frontback left right top bottom
= = = =
=z3 y 2 − = − z3 y 2
D= .(dydz a x ) D dydz
∫back ∫z= 0 ∫ y = 0 x 0 ∫z=0 ∫ y = 0 x x=0
D=(4 xy ) = 0
x x=0 x = 0
→ = 0
∫back
Electric Flux Density, Gauss’ Law & Divergence 51
z
3
Ex. The Divergence Theorem (4)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: x
D.d S = + ++ ++
∫S ∫∫∫∫∫∫frontback left right top bottom
= = = =
= z3 x 1 z3 x 1
D= .(dxdz a y ) = D dxdz
∫right ∫z=0 ∫ x = 0 y 2 ∫z=0 ∫ x = 0 y y=2
D=( z2 ) = z 2
y y=2 y=2
z=3 x = 1
→ = z2 dxdz
∫right ∫z=0 ∫ x = 0
Electric Flux Density, Gauss’ Law & Divergence 52
z
3
Ex. The Divergence Theorem (5)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: x
D.d S = + ++ ++
∫S ∫∫∫∫∫∫frontback left right top bottom
= = = =
=z3 x 1 − = − z3 x 1
D.(dxdz a y ) D dxdz
∫left ∫z= 0 ∫ x = 0 y=0 ∫z=0 ∫ x = 0 y y=0
D=( z2 ) = z 2
y y=0 y=0
z=3 x = 1
→ = − z2 dxdz
∫left ∫z= 0 ∫ x = 0
Electric Flux Density, Gauss’ Law & Divergence 53
z
3
Ex. The Divergence Theorem (6)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: x
D.d S = + ++ ++
∫S ∫∫∫∫∫∫frontback left right top bottom
= = 0
∫top ∫ bottom
Electric Flux Density, Gauss’ Law & Divergence 54
z
3
Ex. The Divergence Theorem (7)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: x
D.d S = + ++ ++
∫S ∫∫∫∫∫∫frontback left right top bottom
zx==31 zx == 31
=++24 0z2 dxdz − z 2 dxdz ++ 0 0
∫∫zx==00 ∫∫ zx == 00
= 24 C
Electric Flux Density, Gauss’ Law & Divergence 55
z
3
Ex. The Divergence Theorem (8)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Right side: x
∇.DdV
∫V
∂D ∂D ∂D ∂ ∂ ∂
∇=.D x +y + z =4xy + z 2 + 0 = 4y
∂x ∂ y ∂ z ∂x ∂ y ∂ z
z=3 y = 2 x = 1
→ ∇.DdV = 4 ydV = 4ydxdydz
∫V ∫ V ∫z=0 ∫ y = 0 ∫ x = 0
z=3 y = 2 z=3
= 4 ydydz = 8dz = 24 C
∫z=0 ∫ y = 0 ∫z=0
Electric Flux Density, Gauss’ Law & Divergence 56
z
3
Ex. The Divergence Theorem (9)
2 2
Given D = 4xy ax + z ay C/m & a rectangular
parallelepiped. Verify the divergence theorem.
2
∫DSD.d= ∫ ∇ . dV () = Q
S V 1 y
Left side: D.d S = 24 C x
∫S
Right side: ∇.DdV = 24 C
∫V
Electric Flux Density, Gauss’ Law & Divergence 57
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_iv_electric_fl.pdf