Bài giảng Engineering electromagnetic - Chapter III: Coulomb’s Law & Electric Field Intensity - Nguyễn Công Phương
Sheet Charge (1) • Charge is distributed on the surface of a plate (e.g. of a parallel-plate capacitor) • Sheet/surface charge density ρS (unit: C/m2)
Bạn đang xem trước 20 trang tài liệu Bài giảng Engineering electromagnetic - Chapter III: Coulomb’s Law & Electric Field Intensity - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Engineering Electromagnetics
Coulomb’s Law & Electric Field Intensity
Contents
I. Introduction
II. Vector Analysis
III. Coulomb’s Law & Electric Field Intensity
IV. Electric Flux Density, Gauss’ Law & Divergence
V. Energy & Potential
VI. Current & Conductors
VII. Dielectrics & Capacitance
VIII.Poisson’s & Laplace’s Equations
IX. The Steady Magnetic Field
X. Magnetic Forces & Inductance
XI. Time – Varying Fields & Maxwell’s Equations
XII. The Uniform Plane Wave
XIII.Plane Wave Reflection & Dispersion
XIV.Guided Waves & Radiation
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 2
Coulomb’s Law & Electric Field Intensity
1. Coulomb’s Law
2. Electric Field Intensity
3. Field Due to a Continuous Volume Charge Distribution
4. Field of a Line Charge
5. Field of a Sheet Charge
6. Sketches of Fields
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 3
Coulomb's Law (1)
• Experiment of Coulomb:
QQ
F= k 1 2
R2
– In free space
– between 2 very small objects (compared to the separation R)
– Q1 & Q2 are the positive/negative quantities of charge
1
−k =
πε
4 0
−1 −
– ε : permittivity of free space, ε =8.854 × 1012 = 10 9 F/m
0 0 36 π
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 4
Coulomb's Law (2)
QQ1 2 a Q F
F= k Q 12 R12 2 2
R2 QQ 1
→ = 1 2
F 2 r2
1 4πε R r1
k = 0
πε Q & Q : alike in sign
4 0 Origin 1 2
QQ
F= 1 2 a
2πε 2 12
4 0R 12
= − a F Q2
R12 r 2 r 1 12 2
Q1
R12
R R rr− r2
a =12 = 12 = 2 1 r1
12 RR r− r
12 12 2 1 Q & Q : opposite sign
Origin 1 2
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 5
Ex. Coulomb's Law (3)
-4 -4
Given Q1 = 4.10 C at A(3, 2, 1) & Q2 = – 3.10 C at B(1, 0, 2) in vacuum. Find the
force exerted on Q2 by Q1.
QQ
F= 1 2 a
2πε 2 12
4 0R 12
=−=− +− +− =− − +
Rrr12 2 1 (1 3) ax (0 2) a y (2 1) aaaa zxyz 2 2
= −2 +− 2 + 2 =
R12 ( 2) ( 2) 1 3
−2a − 2 a + a
=R12 = x y z
a12
R12 3
−4− − 4 −2a − 2 a + a
→ =4.10 ( 3.10 ) × x y z = + −
F2 80ax 80 a y 40 a z N
1 −
4π 1039 2 3
36 π
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 6
Coulomb’s Law & Electric Field Intensity
1. Coulomb’s Law
2. Electric Field Intensity
3. Field Due to a Continuous Volume Charge Distribution
4. Field of a Line Charge
5. Field of a Sheet Charge
6. Sketches of Fields
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 7
Electric Field Intensity (1)
• Consider a fixed Q1 & a test Qt
QQ F Q
F= 1 t a →t = 1 a
tπε 2 1 t πε 2 1t
4 0R 1 t QRt4 0 1 t
• Electric Field Intensity : the vector force on 1C
• Unit: V/m
• EFI due to a single point charge Q in a vacuum:
Q
E= a
πε 2 R
4 0 R
– R: from Q to the point of E
– aR: unit vector of R
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 8
Electric Field Intensity (2)
Q
E= a
πε 2 R
4 0 R
• If Q is at the center of a spherical coordinate system:
Q
E= a
πε 2 r
4 0r
• If Q is at the center of a rectangular coordinate system:
Q x y z
E= aaa + +
πε 2+ 2 + 2 222x 222 y 222 z
40 (x y z ) xyz++ xyz ++ xyz ++
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 9
Q Electric Field Intensity (3)
E= a
πε 2 R
4 0 R
3.5
3
2.5
2
1.5
1
0.5
0
4
3
2 4
3
1
2
0
1
-1 0
-2 -1
-2
-3
-3
-4 -4
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 10
Electric Field Intensity (4)
R = r – r’ E
• If Q is not at the origin: Q
Q
E( r ) = a x’, y’, z’ r P(x, y, z)
πε 2 R r’
4 0 R
R =r − r '
R= r − r ' r− r ' Origin
a =
R r− r '
Q r− r ' Q(r− r ')
→E( r ) = . =
πε − 2 r− r ' πε − 3
40 r r ' 40 r r '
Qxx[(− ')a +− ( yy ') a +− ( zz ') a ]
= x y z
πε −2 +− 2 +− 23/2
40 [(xx ') ( yy ') ( zz ') ]
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 11
Electric Field Intensity (5)
QQ
Er( ) =1 a + 2 a
πε−21 πε − 2 2
401rr 4 02 rr z Q2
r2
r – r2
Q1 r – r1
P
a1 E
n r 1 y
Q r1
= k a
E( r ) ∑ 2 a k 2
= πε −
k 1 4 0 r r k
E2
E(r)
x
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 12
Ex. Electric Field Intensity (6)
-9 -9 -9
Given Q1 = 4.10 C at P1(3, – 2, 1), Q2 = – 3.10 C at P2(1, 0, – 2), Q3 = 2.10 C
-9
at P3(0, 2, 2), Q4 = – 10 C at P4(– 1, 0, 2). Find E at P(1, 1, 1).
n Q
= k
E∑ 2 a k
= πε −
k 1 4 0 r r k
QQQQ
E=1 a + 2 a +3 a + 4 a
πε−21 πε − 2 2 πε − 2 3 πε − 2 4
401rr 4 02 rr 4 03 rr 4 04 rr
− = − +− +−
r r 1 (xx1 )(ax yy 1 )( a y zz 1 ) a z
=− +−− +−
(1 3)ax (1 ( 2)) a y (1 1) a z
= − +
2ax 3 a y
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 13
Ex. Electric Field Intensity (7)
-9 -9 -9
Given Q1 = 4.10 C at P1(3, – 2, 1), Q2 = – 3.10 C at P2(1, 0, – 2), Q3 = 2.10 C
-9
at P3(0, 2, 2), Q4 = – 10 C at P4(– 1, 0, 2). Find E at P(1, 1, 1).
QQQQ
E=1 a + 2 a +3 a + 4 a
πε−21 πε − 2 2 πε − 2 3 πε − 2 4
401rr 4 02 rr 4 03 rr 4 04 rr
r−= r ( − 2)2 + 3 2 = 3.32
− =− + 1
rr1 2 ax 3 a y r− r − 2 3
a=1 = aaaa + =−0.60 + 0.91
1 − x y x y
r r 1 3.32 3.32
− = = +
r r 2 3.16 a2 0.32 ay 0.95 a z
− = = − −
r r 3 1.73 a3 0.58 ax 0.58 a y 0.58 a z
− = = + −
r r 4 2.45 a4 0.82 ax 0.41 a y 0.41 a z
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 14
Ex. Electric Field Intensity (8)
-9 -9 -9
Given Q1 = 4.10 C at P1(3, – 2, 1), Q2 = – 3.10 C at P2(1, 0, – 2), Q3 = 2.10 C
-9
at P3(0, 2, 2), Q4 = – 10 C at P4(– 1, 0, 2). Find E at P(1, 1, 1).
4× 10 −4
E=( − 0.60 a + 0.91 a )
πε × 2 x y
40 3.32
−3 × 10 −4
+(0.32a + 0.95 a ) +
πε × 2 y z
40 3.16
2× 10 −4
+(0.58a −−+ 0.58 a 0.58 a )
πε × 2 x y z
40 1.73
−10 −4
+(0.82a + 0.41 a − 0.41 a )
πε × 2 x y z
40 2.45
= + −
24.66ax 9.99 a y 32.40 a z V/m
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 15
Coulomb’s Law & Electric Field Intensity
1. Coulomb’s Law
2. Electric Field Intensity
3. Field Due to a Continuous Volume Charge
Distribution
4. Field of a Line Charge
5. Field of a Sheet Charge
6. Sketches of Fields
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 16
Volume Charge (1)
• Volume charge density (unit C/m3):
∆
ρ = Q
v lim
∆v →0 ∆v
Q= ρ dv
∫V v
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 17
z
Ex. Volume Charge (2) z = 4 cm
Find the total charge in the cylinder, given
5
ρ= − 5e−10ρ z µ C/m. 3
v z = 1 cm
= ρ
Q∫ v dV
V x y
ρ = 1 cm
5
→Q = − 5 e−10 ρz dV
∫V
dV = ρdρdφdz
0.04 2π 0.01 5
→=Q −×5 10 −6 edddz − 10 ρz ρ ρ ϕ
∫0.01 ∫ 0 ∫ 0
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 18
z
Ex. Volume Charge (3) z = 4 cm
Find the total charge in the cylinder, given
5
ρ= − 5e−10ρ z µ C/m. 3
v z = 1 cm
5
Q= − 5 e−10 ρ z dV
∫V
x y
ρ = 1 cm
0.04 2π 0.01 5
= −5 × 10 −6e − 10 ρz ρ dddz ρ ϕ
∫0.01 ∫ 0 ∫ 0
2π π
dϕ= ϕ2 = 2 π
∫0 0
0.04 0.01 5
→Q = − 10 −5π e − 10 ρz ρ ddz ρ
∫0.01 ∫ 0
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 19
z
Ex. Volume Charge (4) z = 4 cm
Find the total charge in the cylinder, given
5
ρ= − 5e−10ρ z µ C/m. 3
v z = 1 cm
5
Q=∫ − 5 e−10 ρ z dV
V y
0.04 0.01 5 x
=∫ ∫ − 10 −5πe − 10 ρz ρ ddz ρ ρ = 1 cm
0.01 0 0.04
0.04 5 π 5
−10 −5πe − 10 ρ z dz = 10 −10e − 10 ρ z
∫0.01 ρ
π 0.01
=10(−10e − 4000ρ − e − 1000 ρ )
ρ
0.01 π
→Q =10−10 ( eed − 4000ρ − − 1000 ρ ) ρ ρ
∫0 ρ
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 20
z
Ex. Volume Charge (5) z = 4 cm
Find the total charge in the cylinder, given
5
ρ= − 5e−10ρ z µ C/m. 3
v z = 1 cm
5
Q=∫ − 5 e−10 ρ z dV
V y
0.01 −π −ρ − ρ x
=1010 (e 4000 − e 1000 ) ρ d ρ ρ = 1 cm
∫0 ρ
0.01
=10(−10πe − 4000ρ − e − 1000 ρ ) d ρ
∫0
0.01
−4000ρ − 1000 ρ π
− e e 3 −12
=10 10 π − = − 10 = 0.236 pC
−4000 − 1000 40
0
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 21
Volume Charge (6)
• EFI at r due to ∆Q at r’ :
Q r− r ' ∆Q r − r '
E( r )= . → ∆E( r ) = .
πε − 2 r− r ' πε − 2 r− r '
40 r r ' 40 r r '
∆ =ρ ∆
Qv v
ρ ∆v r− r '
→ ∆E( r ) = v .
πε − 2 r− r '
40 r r '
• → EFI at r due to a volume charge:
ρ (r ')dv ' −
= v r r '
E( r )∫ 2 .
V πε − r− r '
40 r r '
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 22
Volume Charge (7)
ρ (r ')dv ' −
= v r r '
E( r )∫ 2 .
V πε − r− r '
40 r r '
• r : the vector locates E
• r’: the vector locates the volume charge ρ(r’) dv ’
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 23
Coulomb’s Law & Electric Field Intensity
1. Coulomb’s Law
2. Electric Field Intensity
3. Field Due to a Continuous Volume Charge Distribution
4. Field of a Line Charge
5. Field of a Sheet Charge
6. Sketches of Fields
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 24
Line Charge (1)
• Line charge density ρL (unit: C/m)
• Cylindrical coordinate system
• EFI of an infinite uniform line charge has only an Eρ
component & it varies only with ρ
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 25
Q
E= a Line Charge (2) = ρ
πε 2 R EEρ( ) a ρ
4 0 R
EFI of an infinite uniform line charge has only an Eρ component & it varies only with ρ
z z z
φ = const
ρL ρL ρL
z = const z = var z = const
φ = var φ = const
ρ = const y y y
x x ρ = const x ρ = var
ρ = const ρ = const ρ = var
ϕ =var →E = const ϕ =const →E = const ϕ =const →E = var
z = const z = var z = const
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 26
z
Line Charge (3) z ' dQ
Q(r− r ') dQ(r− r ') r '
E( r ) = →dE =
πε − 3 πε − 3 P (0, y, 0)
40 r r ' 40 r r '
r
dQ x y
ρ = →dQ = ρ dz ' ρ
L dz ' L L
ρ dz '(r− r ')
→dE = L
4πε r− r ' 3
0 ρdz'( ρ a− z ' a )
→dE = Lρ z
= = ρ rr−' =ρ a − z ' a 2 23/2
ry ay a ρ ρ z 4πε ( ρ + z ')
→ 0
= − =ρ 2 + 2
r'z ' a z r r 'z '
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 27
z
Line Charge (4) z ' dQ
ρdz'( ρ aρ − z ' a )
dE = L z r '
πε ρ 2+ 23/2
40 (z ') P (0, y, 0)
E is not a function of z x r y
ρ
ρ ρ dz ' L
→dE = L
ρ πε ρ 2+ 23/2
40 (z ')
∞ ρ ρ dz ' ρ
→E = L = L
ρ ∫−∞ πε ρ 2+ 23/2 πε ρ
40 (z ') 2 0
ρ
→ E= L a
πε ρ ρ
2 0
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 28
ρ
E= L a Line Charge (5)
πε ρ ρ
2 0
8
6
4
2
0
-2
-4
-6
-8
2.5
2
1.5
2.5
1 2
0.5 1.5
0 1
0.5
-0.5 0
-1 -0.5
-1.5 -1
-1.5
-2
-2
-2.5 -2.5
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 29
Ex. 1 Line Charge (6)
Infinite uniform line charge of 10 nC/m lie along the x & y axes
in free space. Find E at (0, 0, 3).
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 30
Ex. 2 Line Charge (7)
The x & y axes are charged with uniform line charge of 10 nC/m.
A point charge of 20nC is located at (3, 3, 0). The whole system
is in free space. Find E at (0, 0, 3).
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 31
z
Ex. 3
Line Charge (8) dE p
Given a circular hoop of radius a with uniform line charge ρL
centered about the origin in the z = 0 plane. Find EFI at P? θ
dE1 dE2
= dQ 1 P (0, 0, z)
dE 1 2
πε r2
4 0r 1 ρ ϕ
→ = Lad
dE 1 dQ
dQ=ρ dL = ρ ad ϕ πε 2+ 2 r1 1
1 L L 40 (a z )
2 2 ϕ a y
r= a + z dE=2 dE = 2 dE cos θ dQ
1 Pz1 z 1 2 ρ
L
z x
cos θ =
a2+ z 2
π
ρazd ϕ ρazd ϕ ρ az
→dE = L →E = L = L
Pz πε 2+ 23/2 Pz ∫ πε 2+ 23/2 ε 2+ 23/2
20 (a z ) ϕ =0 20 (a z ) 20 (a z )
ρ az
→E = L a
Pε 2+ 23/2 z
20 (a z )
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 32
Coulomb’s Law & Electric Field Intensity
1. Coulomb’s Law
2. Electric Field Intensity
3. Field Due to a Continuous Volume Charge Distribution
4. Field of a Line Charge
5. Field of a Sheet Charge
6. Sketches of Fields
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 33
Sheet Charge (1)
• Charge is distributed on the surface of a plate (e.g. of a
parallel-plate capacitor)
2
• Sheet/surface charge density ρS (unit: C/m )
ρ = dQ
S dS
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 34
Sheet Charge (2) z
ρ ρ dy '
= L → = L
E a R dE a ρ
2πε ρ πε 2+ 2 R S y '
0 20 x y '
dQ=ρ dS = ρ Ldy '
S S P( x ,0,0) θ y
L → ∞
dE
R= x2 + y ' 2
dQ ρ Ldy ' dEx
→ρ = =S = ρ dy ' x
L L L S
ρ dy 'a
→dE = S R ρ θ
πε 2+ 2 → = S dy 'cos
20 x y ' dE
x πε 2+ 2
20 x y '
dE x = dE cos θ
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 35
Sheet Charge (3) z
dy '
ρdy 'cos θ
= S ρ
dE x S y '
πε 2+ 2
20 x y '
x
cos θ = P( x ,0,0) θ y
x2+ y ' 2
dE 2 2
ρ xdy ' dE R= x + y '
→dE = S . x
x πε 2+ 2 x
20 x y '
ρ ∞ xdy ' ρ ρ
→E = S = S → E= S a
x πε ∫−∞ 2+ 2 ε ε N
20 x y ' 2 0 2 0
(aN: vector perpendicular to the sheet)
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 36
ρ
E= S a Sheet Charge (4)
ε N
2 0
2.5
2
1.5
1
0.5
0
10
8
6 10
4 8
2 6
4
0 2
-2 0
-4 -2
-6 -4
-6
-8 -8
-10 -10
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 37
Sheet Charge (5)
ρ
E= S a
2ε N
– ρ 0
S ρS z
x> a x < 0
ρ ρ
E= S a 0 <x < a E= − S a
+ ε x a 0 + ε x
2 0 2
ρ x y ρ 0
= − S ρ E= S a
E- a x = S - x
2ε E+ a x 2ε
0 2ε 0
ρ 0
→= + = = S
EEE+ − 0 E a →=EEE + = 0
- 2ε x + −
0 ρ
→=EEE + = S a
+ − ε x
0
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 38
Ex. 1 Sheet Charge (6)
Given 3 infinite uniform sheets (all parallel to x0y) at z = – 3, z = 2
& z = 3. Their surface charge density are 4 nC/m2, 6 nC/m2 &
–9 nC/m2 respectively. Find E at P(5, 5, 5).
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 39
z dy '
Ex. 2 Sheet Charge (7)
A uniformly volume charge density charge ρv of
infinite extent in the x & z directions & of width
− a
2a is centered about the y axis. Find EFI? a 0
y
ρ
ρ= ρ v
S v dy '
ρ ρ dy ' a ρdy' a ρ
y≤− a: dE =−S =− v →E =−v =− v
y ε ε y ∫ ε ε
20 2 0 −a 2 0 0
ρ ρ dy ' a ρdy' a ρ
y≥ a: dE =S = v →E =v = v
y ε ε y ∫ ε ε
20 2 0 −a 2 0 0
y ρdy'a ρ dy ' ρ
− ≤ ≤ →=Ev − v = v y
a y a : y ∫ε ∫ ε ε
−a20 y 2 0 0
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 40
Ex. 3 Sheet Charge (8)
Given a circular disk of radius a with uniform surface charge z
ρ centered about the origin in the z = 0 plane. Find EFI at P?
S P (0, 0, z)
ρ ρ
ρ= ρd ρ S
L S y
ρ
ρ ρ z d a
dE = L
Pz ε ρ 2+ 23/2
20 (z ) x
(ρd ρ ) ρ z a (ρd ρ ) ρ z ρ z z
→dE = S →E = S = −S −
Pz ε ρ 2+ 23/2 Pz ∫ ε ρ 2+ 23/2 ε 2 2
20 (z ) 0 20 (z ) 2 0 a+ z z
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 41
Ex. 4 Sheet Charge (9) z
A hollow cylinder of radius a & length 2 L with uniform P (0, 0, z)
surface charge ρS on its outer surface. Find EFI at P? L
dz'
z' y
ρ= ρ
L S dz '
–L
ρ az
dE = L x a
Pz ε 2+ 23/2 ρS
20 (a z )
(ρ dz ') az (− z ') L (ρ dz ') az (− z ')
→dE = S →E = S
Pz ε 2+ − 23/2 Pz ∫ ε 2+ − 23/2
20 [a ( z z ') ] −L 2[0 a ( z z ')]
ρ a 1 1
=S −
ε 2+− 22 ++ 2
2 0 a() zL a () zL
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 42
Ex. 5 Sheet Charge (10) z
A cylinder (of radius a & length 2 L) is uniformly charged P (0, 0, z)
throughout the volume with volume charge density ρv. Find L
EFI at P?
y
ρv
–L
x a
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 43
Basic Charge Configurations
Point Charge Line Charge
− ρ
Q r r ' L
E = . E= a ρ
πε − 2 r− r ' 2πε ρ
40 r r ' 0
Sheet Charge Volume Charge
ρ ρ (r ')dV ' r− r '
= S = v
E a N E ∫ 2 .
2ε V πε − r− r '
0 40 r r '
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 44
Coulomb’s Law & Electric Field Intensity
1. Coulomb’s Law
2. Electric Field Intensity
3. Field Due to a Continuous Volume Charge Distribution
4. Field of a Line Charge
5. Field of a Sheet Charge
6. Sketches of Fields
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 45
Sketches of Fields
• To “picture” a field
• A set of vectors of a field
Coulomb’s Law & Electric Field Intensity - sites.google.com/site/ncpdhbkhn 46
Các file đính kèm theo tài liệu này:
- bai_giang_engineering_electromagnetic_chapter_iii_coulombs_l.pdf