Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
39 trang |
Chia sẻ: linhmy2pp | Lượt xem: 223 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Electromechanical energy conversion - Chapter V: Polyphase Induction Machines - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
ELECTROMECHANICAL ENERGY
CONVERSION
Polyphase Induction Machines
Contents
I. Magnetic Circuits and Magnetic Materials
II. Electromechanical Energy Conversion
Principles
III. Introduction to Rotating Machines
IV. Synchronous Machines
V. Polyphase Induction Machines
VI. DC Machines
VII.Variable – Reluctance Machines and Stepping
Motors
VIII.Single and Two – Phase Motors
IX. Speed and Torque Control
sites.google.com/site/ncpdhbkhn 2
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 3
Introduction to Polyphase
Induction Machines (1)
• Induction motor: alternating current is supplied to the stator
directly & to the rotor by induction or transformer action
from the stator.
• Two kinds of rotor:
– Wound rotor (relatively uncommon)
– Squirrel-cage rotor (the most commonly used)
sites.google.com/site/ncpdhbkhn 4
Introduction to Polyphase
Induction Machines (2)
• The rotor speed: n (r/min).
• The synchronous speed of the stator field: ns
(r/min).
• The rotor slip: ns – n (r/min)
n n
• The fractional slip: s s (%)
ns
• the rotor speed: n = (1 – s)ns
• The mechanical angular velocity: ωm = (1 – s)ωs
• The slip frequency: fr = sfe
sites.google.com/site/ncpdhbkhn 5
Introduction to Polyphase
Induction Machines (3)
• The rotor terminals of an induction motor are
short circuited.
• The rotating air – gap flux induces slip –
frequency voltages in the rotor windings.
• The operating speed can never equal the
synchronous speed.
• The rotor currents produce a rotating flux wave
which rotate at sns (r/min) with respect to the
rotor.
• The rotor speed: n (r/min)
• The speed of the rotor’s flux wave:
sns + n = sns + ns(1 – s) = ns
sites.google.com/site/ncpdhbkhn 6
Introduction to Polyphase
Induction Machines (4)
• The speed of the stator field: ns (r/min).
• The speed of the rotor field: ns (r/min).
• the rotor currents produce a field which
rotates at synchronous speed and hence in
synchronism with that produced by the stator
currents.
• the stator & rotor fields are stationary with
respect to each other, & produce a steady
torque, called asynchronous torque.
sites.google.com/site/ncpdhbkhn 7
Introduction to Polyphase
Induction Machines (5)
sites.google.com/site/ncpdhbkhn 8
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 9
Currents and Fluxes in Polyphase
Induction Machines (1)
Resultant flux – density
Rotor – mmf wave
wave
a c b a c b a
90o Rotation
Resultant flux – density
Rotor – mmf wave
wave
a c b a c b a
90o Rotation
sites.google.com/site/ncpdhbkhn 10
Currents and Fluxes in Polyphase
Induction Machines (2)
Flux-density wave
Instantaneous bar – voltage
magnitudes
s
1 2 3 4 5 6 7 8 9
11 12 13 14 15 16 1
(1 s )s
Instantaneous bar – current
s
magnitudes
1 2 3 4 5 6 7 8 9
11 12 13 14 15 16 1
(1 s )s
sites.google.com/site/ncpdhbkhn 11
Currents and Fluxes in Polyphase
Induction Machines (3)
Rotor – mmf wave
Flux-density wave
s
1 2 3 4 5 6 7 8
9 11 12 13 14 15 16 1
(1 s )s
Fundamental component of
rotor – mmf wave
sites.google.com/site/ncpdhbkhn 12
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 13
Induction – Motor Equivalent
Circuit
a
X1 Iˆ X 2
R1 ˆ Iˆ
I1 2
R2
ˆ Iˆ Iˆ ˆ s
V1 c m E2
Rc X m
b
sites.google.com/site/ncpdhbkhn 14
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 15
Analysis
of the Equivalent Circuit (1)
a
X1 ˆ X 2
2 R2 R I ˆ
1 Iˆ I2
Pgap n ph I2 1 R
s 2
ˆ Iˆ Iˆ ˆ s
2 V1 c m E2
Protor n ph I2 R 2
Rc X m
PPPmech gap rotor
b
R
n I22 n I 2 R
ph2s ph 2 2 a
X1 ˆ X 2
R I ˆ
1 Iˆ I2
2 1 s 1
R2
nph I2 R 2
s ˆ Iˆ Iˆ ˆ
V1 c m E2
Pmech(1 s ) P gap
R X 1 s
c m R
Protor sP gap s 2
b
sites.google.com/site/ncpdhbkhn 16
Analysis
Ex. 1 of the Equivalent Circuit (2)
A three – phase, two – pole, 60-Hz induction motor is operating at 3502 r/min with
an input power of 15.7 kW and a terminal current of 22.6 A, the stator – winding
resistance is 0.20 Ω/phase. Calculate the power dissipated in rotor?
2 2
PIRstator 31 1 3 22.6 0.2 306W
PPPgap input stator 15.7 0.3 15.4 kW
120 120
n f 60 3600r/min
spoles e 2
n n 3600 3502
s s 0.0272
ns 3600
Protor sP gap 0.0272 15.4 419 W
sites.google.com/site/ncpdhbkhn 17
Analysis
of the Equivalent Circuit (3)
PTmech m mech
m(1 s ) s
Pmech (1 s ) s T mech
Pmech(1 s ) P gap
Pgap
Tmech
s
R
P n I 2 2
gap ph 2 s
2
nph I2(/) R 2 s
Tmech
s
PPPshaft mech rot
TTTshaft mech rot
sites.google.com/site/ncpdhbkhn 18
Analysis
Ex. 2 of the Equivalent Circuit (4)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
Prot = 403W (independent of load), s = 2%. Compute the speed, output torque and
power, stator current, power factor, and efficiency?
a
R
2 jX jX X X
2 m R 1 ˆ 2
s 1 Iˆ I2
Z 1
ab R
2 jX jX
2 m ˆ Iˆ ˆ
s V1 m E2
R2
0.144 X s
j0.209 j 13.25 m
0.02
0.144 b
j0.209 j 13.25
0.02
5.43 j 3.11
220
Vˆ
ˆ 1 3 o
I1 15.93 j 10.14 18.88 32.5 A
R1 jX 1 Zab 0.249j 0.503 5.43 j 3.11
sites.google.com/site/ncpdhbkhn 19
Analysis
Ex. 2 of the Equivalent Circuit (5)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
Prot = 403W (independent of load), s = 2%. Compute the speed, output torque and
power, stator current, power factor, and efficiency?
ˆ o
I1 15.93 j 10.14 18.88 32.5 A
pf cos( 32.5o ) 0.844 lagging
120 120
n f 60 1200 r/min
spoles e 6
n(1 s ) ns (1 0.02)1200 1176 r/min
2 2 2
2 f 2 60 125.7 rad/sec
spoles e poles e 6
m(1 s ) s (1 0.02)125.7 123.2 rad/sec
sites.google.com/site/ncpdhbkhn 20
Analysis
Ex. 2 of the Equivalent Circuit (6)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
Prot = 403W (independent of load), s = 2%. Compute the speed, output torque and
power, stator current, power factor, and efficiency?
ˆ o a
I1 18.88 32.5 A
X1 X 2
R1 ˆ Iˆ
Zab 5.43 j 3.11 I1 2
2 ˆ
ˆ Im ˆ
PIRgap 3 1 ab V1 E2
R2
2 s
3 18.8 5.41 5740W X m
PPPshaft mech rot b
(1 s ) Pgap P rot (1 0.02)5740 403 5220W
Pshaft 5220
Tshaft 42.4Nm
m 123.2
sites.google.com/site/ncpdhbkhn 21
Analysis
Ex. 2 of the Equivalent Circuit (7)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
Prot = 403W (independent of load), s = 2%. Compute the speed, output torque and
power, stator current, power factor, and efficiency?
Pshaft 5220W
ˆ ˆ*
PVIin 3Re{1 1 }
3Re{127(18.88 32.5o )}
6060W
P 5220
shaft 86.1%
Pin 6060
sites.google.com/site/ncpdhbkhn 22
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 23
Torque and Power by Use of
Thevenin’s Theorem (1)
a
jX m
VVˆ ˆ X1 X 2
1,eq 1 R1 ˆ Iˆ
I1 2
R1 j() X 1 X m
ˆ
Vˆ Im Eˆ
jXm () R1 jX 1 1 2 R
Z1,eq 2
R1 j() X 1 X m s
X m
R jX
1,eq 1, eq b
a
ˆ
V1,eq X X
Iˆ R 1,eq ˆ 2
2 1,eq I2
Z1,eq jX 2 R 2 / s
Vˆ Eˆ
n I2 (/) R s 1,eq 2 R
T ph 2 2 2
mech s
s
2 b
1 nph V1, eq (/) R 2 s
2 2
s(/)()R1, eq R 2 s X 1, eq X 2
sites.google.com/site/ncpdhbkhn 24
Torque and Power by Use of
Thevenin’s Theorem (2)
2
1 nph V1, eq (/) R 2 s ns n
Tmech 2 2 , s
s(/)()R1, eq R 2 s X 1, eq X 2 n s
600
400
Motor
200
0
Braking region Motor region Generator region
-200
Torque
-400
-600
-800
Generator
-1000
-1200
2 1.5 1 0.5 0 -0.5 -1 -1.5
Fractional slip s
sites.google.com/site/ncpdhbkhn 25
Torque and Power by Use of
Thevenin’s Theorem (3)
2
1 nph V1, eq (/) R 2 s
Tmech 2 2
s(/)()R1, eq R 2 s X 1, eq X 2
2 2 2 2
dTmech nph V1, eq R 1, eq()(/) X 1, eq X 2 R 2 s
2 2 2 0
d( R2 / s )s [( R 1, eq R 2 / s ) ( X 1, eq X 2 ) ]
R
2 RXX2 () 2
s 1,eq 1, eq 2
2
1 0.5nph V1, eq
Tmax
2 2
s RRXX1,eq 1, eq () 1, eq 2
R2
smaxT
RXX2() 2
1,eq 1, eq 2
sites.google.com/site/ncpdhbkhn 26
Torque and Power by Use of
Thevenin’s Theorem (4)
600
I
1
P
T
500
400
300
200
100
0
-100
-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
s
sites.google.com/site/ncpdhbkhn 27
Torque and Power by Use of
Ex. Thevenin’s Theorem (5)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
s = 3%. Compute (a) I2, Tmech, Pmech; (b) the maximum electromechanical torque &
the corresponding speed; (c) the electromechanical starting torque Tstart & the
corresponding stator load current I2,start?
a
jX m
VVˆ ˆ X1 X 2
1,eq 1 R1 ˆ Iˆ
I1 2
R1 j() X 1 X m
ˆ
Vˆ Im Eˆ
220j 13.25 1 2 R
2
s
3 0.249j (0.503 13.25) X m
122.4 1o V b
jX() R jX a
m 1 1 X X
Z1,eq R 1, eq jX 1, eq R 1,eq ˆ 2
1,eq I2
R1 j() X 1 X m
Vˆ Eˆ
j13.25(0.249 j 0.503) 1,eq 2 R
2
0.249j (0.503 13.25) s
0.231 j 0.449 b
sites.google.com/site/ncpdhbkhn 28
Torque and Power by Use of
Ex. Thevenin’s Theorem (6)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
s = 3%. Compute (a) I2, Tmech, Pmech; (b) the maximum electromechanical torque &
the corresponding speed; (c) the electromechanical starting torque Tstart & the
corresponding stator load current I2,start?
a
o
ˆ X X
V1,eq122.4 1 V; Z 1, eq 0.231 j 0.449 R 1,eq ˆ 2
1,eq I2
Vˆ ˆ
RX1,eq 0.231 ; 1, eq 0.449 1,eq E2
R2
s
Vˆ
ˆ 1,eq
I2 b
Z1,eq jX 2 R 2 / s
122.4 1o
0.231j 0.449 j 0.209 0.144 / 0.03
23.916 j 2.877 24.089 6.9o A
sites.google.com/site/ncpdhbkhn 29
Torque and Power by Use of
Ex. Thevenin’s Theorem (7)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
s = 3%. Compute (a) I2, Tmech, Pmech; (b) the maximum electromechanical torque &
the corresponding speed; (c) the electromechanical starting torque Tstart & the
corresponding stator load current I2,start?
ˆ o
I2 24.089 6.9 A
R 0.144
P n I2 2 (1 s ) 3 24.0892 (1 0.03) 8105W
mech ph 2 s 0.03
2 2 2
2 f 2 60 125.7 rad/sec
spoles e poles e 6
m(1 s ) s (1 0.03)125.7 121.9 rad/sec
Pmech 8105
Tmech 66.5Nm
m 121.9
sites.google.com/site/ncpdhbkhn 30
Torque and Power by Use of
Ex. Thevenin’s Theorem (8)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
s = 3%. Compute (a) I2, Tmech, Pmech; (b) the maximum electromechanical torque &
the corresponding speed; (c) the electromechanical starting torque Tstart & the
corresponding stator load current I2,start?
ˆ o
V1,eq122.4 1 V; Z 1, eq 0.231 j 0.449 ; s 125.7 rad/sec
2
2 1 0.5 3 122.4
1 0.5nph V1, eq
Tmax 2 2
2 2 125.7 0.231 0.231 (0.449 0.209)
s RRXX1,eq 1, eq () 1, eq 2
0.144
R
2 2 2
smaxT 0.231 (0.449 0.209)
RXX2() 2
1,eq 1, eq 2
Tmax 192.6 Nm
s 0.2065
maxT
sites.google.com/site/ncpdhbkhn 31
Torque and Power by Use of
Ex. Thevenin’s Theorem (9)
Given a three – phase, six – pole, Y – connected, 220-V (line-to-line) 60-Hz 7.5-kW
induction motor, R1 = 0.249Ω/phase, R2 = 0.144, X1 = 0.503, X2 = 0.209, Xm = 13.25,
s = 3%. Compute (a) I2, Tmech, Pmech; (b) the maximum electromechanical torque &
the corresponding speed; (c) the electromechanical starting torque Tstart & the
corresponding stator load current I2,start?
Vˆ
ˆ 1,eq
s1 I2,start
Z1,eq jX 2 R 2 /1
122.4 1o
154.5 60.7o A
0.231j 0.449 j 0.209 0.144
2 2
nph I2 R 2 3 154.5 0.144
Tstart 82.04 Nm
s 125.7
sites.google.com/site/ncpdhbkhn 32
Torque and Power by Use of
Thevenin’s Theorem (10)
100
90
80
70
60
50
Torque
40
30
R = 0.1
2
R = 0.2
20 2
R = 0.5
2
R = 1.0
10 2
R = 1.5
2
0
0 200 400 600 800 1000 1200 1400 1600 1800
rpm
sites.google.com/site/ncpdhbkhn 33
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
a) No – Load Test
b) Blocked – Rotor Test
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 34
No – Load Test
2
Prot P nl n ph I1, nl R 1
This test is ordinarily performed
d P
m rot at rated frequency & with balanced
JT rot
dt m polyphase voltages applied
to the stator terminals
dm
PJrot() m m
dt a
X X
2 R 1 ˆ 2
1 Iˆ I2
Pcore P nl P rot n ph I1, nl R 1 1
ˆ
Vˆ Im Eˆ
2 1 2 R
nph V1, nl 2
R s
c X m
Pcore
b
XXXXnl11 1 m
2 2
Qnl S nl P nl, S nl n ph V1, nlnl I 1,
Qnl V1,nl
X nl 2
nph I1, nl I 1, nl
sites.google.com/site/ncpdhbkhn 35
Blocked – Rotor Test (1)
The rotor is blocked so that it can not rotate (hence the slip is equal to unity),
and balaced polyphase voltages are applied to the stator terminals
2 2
a
Qbl S bl P bl, S bl n ph V1, bl I 1, bl
X X
R 1 ˆ 2
1 Iˆ I2
f Q 1
X r bl
bl 2 ˆ Iˆ ˆ
V1 m E2
fbl n ph I1, bl R2
X s
P m
R bl
bl 2 b
nph I1, bl
Zbl R1 jX 1 [( R 2 jX 2 )in parallel with jX m ]
2 2
XXRXXXm m[2 2 ( m 2 )]
R1 R 22 2 j X 1 2 2
RXXRXX2()()m 2 2 m 2
RX2 m
2
XXXm2 m
Zbl R1 R 22 j X 1
()XXXXm2 2 m
sites.google.com/site/ncpdhbkhn 36
Blocked – Rotor Test (2)
2
XXXm2 m
Zbl R1 R 22 j X 1 Rbl jX bl
()XXXXm2 2 m
2
X m
RRRbl 1 2 2 2
RXX2()m 2
XRXXX[2 ( )]
XX m2 2 m 2
bl 1 2 2
RXX2()m 2
2
XX2 m
RRR2()bl 1
X m
X
XXX() m
2bl 1
XXXm1 bl
XXXXnl11 1 m XXXm nl 1
XXnl 1
XXX2 ()bl 1
XXnl bl
sites.google.com/site/ncpdhbkhn 37
Polyphase Induction Machines
1. Introduction to Polyphase Induction Machines
2. Currents and Fluxes in Polyphase Induction
Machines
3. Induction – Motor Equivalent Circuit
4. Analysis of the Equivalent Circuit
5. Torque and Power by Use of Thevenin’s
Theorem
6. Parameter Determination from No – Load and
Blocked – Rotor Tests
7. Effects of Rotor Resistance
sites.google.com/site/ncpdhbkhn 38
Effects of Rotor Resistance
100
90
80
70
60
50
Torque
40
30
R = 0.1
2
R = 0.2
20 2
R = 0.5
2
R = 1.0
10 2
R = 1.5
2
0
0 200 400 600 800 1000 1200 1400 1600 1800
rpm
sites.google.com/site/ncpdhbkhn 39
Các file đính kèm theo tài liệu này:
- bai_giang_electromechanical_energy_conversion_chapter_v_poly.pdf