Bài giảng Electromechanical energy conversion - Chapter IV: Synchronous Machines - Nguyễn Công Phương
Polyphase synchronous motors
with permanent – magnet
rotors.
• Similar to the synchronous
machines discussed up to this
point, with the exception that
the field windings are replaced
by permanent magnets can
be analysed with the techniques
of this chapter by assuming that
the machine is excited by a
field current of constant value.
• Frequently referred to as
“brushless motors”
62 trang |
Chia sẻ: linhmy2pp | Ngày: 18/03/2022 | Lượt xem: 194 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Electromechanical energy conversion - Chapter IV: Synchronous Machines - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
NguyễnCôngPhương
ELECTROMECHANICAL ENERGY
CONVERSION
Synchronous Machines
Contents
I. Magnetic Circuits and Magnetic Materials
II. Electromechanical Energy Conversion
Principles
III. Introduction to Rotating Machines
IV. Synchronous Machines
V. Polyphase Induction Machines
VI. DC Machines
VII.Variable – Reluctance Machines and Stepping
Motors
VIII.Single and Two – Phase Motors
IX. Speed and Torque Control
sites.google.com/site/ncpdhbkhn 2
Synchronous Machines
1. Introduction to Polyphase Synchronous
Machines
2. Synchronous – Machine Inductances and
Equivalent Circuits
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient –
Pole Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 3
Introduction to Polyphase
Synchronous Machines (1)
Synchronous machine:
• An AC machine.
• Speed under steady – state conditions is Field
winding
proportional to the frequency of the (AC) c
current in its armature winding (on the
a b
stator, & usually a three – phase N
winding). Rotor
• The rotor (field winding):
S
– There is a magnetic field created by the a
DC current on the motor. b
Stator
– Rotates at the same speed as the rotating c
magnetic field produced by the armature Armature
winding winding
• The DC power required for excitation is
supplied by the excitation system
sites.google.com/site/ncpdhbkhn 4
Introduction to Polyphase
Synchronous Machines (2)
• In older machines, the excitation current is
supplied through slipping rings from a DC
machine.
• In modern machines, the excitation is supplied
from AC exciters & solid – state rectifiers.
• In other systems (brushless excitation system),
the alternator of the AC exciter is on the rotor,
& the current is supplied directly to the field
winding without any slipping ring.
sites.google.com/site/ncpdhbkhn 5
Introduction to Polyphase
Synchronous Machines (3)
A single synchronous generator supplying power
to an impedance load:
• Acts as a voltage source.
• Its frequency is determined by the speed of its
mechanical drive (the prime mover).
• The amplitude of the generated voltage is
proportional to the frequency & the field current.
• The current & power factor are determined by the
generator field excitation & the impedance of the
generator & the load.
sites.google.com/site/ncpdhbkhn 6
Introduction to Polyphase
Synchronous Machines (4)
Synchronous generators:
• Can be readily operated in parallel.
• The electricity supply system has hundreds of them operating in
parallel, interconnected by thousands of kilometres of transmission
lines.
• Must be coordinated both technically & administratively.
• When a synchronous generator is connected to a large
interconnected system:
– The voltage & frequency at its armature terminals are substantially
fixed by the system.
– Armature currents will produce a component of the air – gap magnetic
field which rotates at synchronous speed as determined by the system
electrical frequency fe.
– The fields of the stator & rotor must rotate at the same speed, &
therefore the rotor must turn at precisely synchronous speed.
– It is useful to represent the remainder of the system as a constant –
frequency, constant – voltage source, referred to as an “infinte bus”.
sites.google.com/site/ncpdhbkhn 7
Introduction to Polyphase
Magnetic axis
Synchronous Machines (5) of rotor
2
poles a
TFsin
R fRF c b
22 f RF
• Ф : resulting air – gap flux per pole.
R Magnetic axis
• Ff: mmf of the DC field winding. b
f c of phase a
• δRF: electrical phase angle between
magnetic axes of ФR & Ff.
• In a generator: the prime – mover torque a
acts in the direction of rotation of the rotor,
pushing the rotor mmf wave ahead of the T
resultant air – gap flux, the g
electromechanical torque then opposes
rotation. Generator
o o
• In a synchronous motor: the 180 90 RF
electromechanical torque is in the direction 0 90o 180o
of rotation, in opposition to the retarding Motor
torque of the mechanical load on the shaft. m
sites.google.com/site/ncpdhbkhn 8
Synchronous Machines
1. Introduction to Polyphase Synchronous
Machines
2. Synchronous – Machine Inductances &
Equivalent Circuits
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient –
Pole Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 9
Synchronous – Machines Inductances
& Equivalent Circuits (1)
v Magnetic axis
a of rotor
ia
a
a aaiiii a ab b ac c af f
c b
f m t 0
bbaabbbbccbffiiii
iiii Magnetic axis
c ca a cb b cc c cf f b
f c of phase a
f faiiii a fb b fc c ff f
a
ia
va
sites.google.com/site/ncpdhbkhn 10
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances & Equivalent
Circuits
a) Rotor Self – Inductance
b) Stator – to – Rotor Mutual Inductances
c) Stator Inductances & Synchronous Inductance
d) Equivalent Circuit
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 11
Rotor Self – Inductance
aaaaabbaccaff iiii
bbaabbbbccbffiiii
c caiiii a cb b cc c cf f
f faiiii a fb b fc c ff f
ffffffflL LL0
(rotor self – inductance)
sites.google.com/site/ncpdhbkhn 12
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances & Equivalent
Circuits
a) Rotor Self – Inductance
b) Stator – to – Rotor Mutual Inductances
c) Stator Inductances & Synchronous Inductance
d) Equivalent Circuit
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 13
Stator – to – Rotor Mutual Inductance
a aaiiii a ab b ac c af f
b baiiii a bb b bc c bf f
c caiiii a cb b cc c cf f
f faiiii a fb b fc c ff f
af faL afcos me
mst 0
af fa Lt afcos( e e0 )
poles (stator – to – rotor mutual inductance)
t
me2 m e e0
sites.google.com/site/ncpdhbkhn 14
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances & Equivalent
Circuits
a) Rotor Self – Inductance
b) Stator – to – Rotor Mutual Inductances
c) Stator Inductances & Synchronous Inductance
d) Equivalent Circuit
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 15
Stator Inductances &
Synchronous Inductance (1)
a aaiiii a ab b ac c af f
b baiiii a bb b bc c bf f
c caiiii a cb b cc c cf f
f faiiii a fb b fc c ff f
aa bb ccL aa LL aa0 al
ab ba ac caL aa0 /2
(stator inductance & stator mutual inductance)
sites.google.com/site/ncpdhbkhn 16
Stator Inductances &
Synchronous Inductance (2)
a aaiiii a ab b ac c af f
af faLt afcos( e e0 )
aa bb ccL aa LL aa0 al
ab ba ac caL aa0 /2
LL
()L Li aa00 i aa i L cos() t i
aaaalab0022 cafeef
L
()()cos()L Li aa0 i i L t i
aa00 al a2 b c af e e f
sites.google.com/site/ncpdhbkhn 17
Stator Inductances &
Synchronous Inductance (3)
L
()()cos()L Li aa0 i i L t i
aaaala002 bcafeef
iiiabc 0
L
()L Li aa0 i L cos() t i
aaaalaaafeef002
3Laa0
LaliL a afcos( e t e0 ) i f
2
LsaiL afcos( e t e0 ) i f
3L
L aa0 L (synchronous inductance)
sal2
sites.google.com/site/ncpdhbkhn 18
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances & Equivalent
Circuits
a) Rotor Self – Inductance
b) Stator – to – Rotor Mutual Inductances
c) Stator Inductances & Synchronous Inductance
d) Equivalent Circuit
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 19
Equivalent Circuits (1)
d
ei()
afdt af f
afLt afcos( e e0 )
LI
eLIt sin( ), E eaff
af e af f e e0 af 2
d
vRia
aaadt
asaafeLi Lcos( t e0 )
di
vRiL a LIsin( t )
aaasdt eaffee0
di
vRiL a e
aaasdt af
sites.google.com/site/ncpdhbkhn 20
Equivalent Circuits (2)
di
vRiLa e Iˆ
aaasdt af a
X s
+ Ra
ˆ –
vVaa Vˆ
ˆ Motor a
Eaf
Ri RIˆ
aa a a ˆˆ ˆˆ
VRIaaasaaf jXI E
di
LjLIjXIa ˆˆ
s esa sa ˆˆˆˆ
dt VRIjXIEaaasaa f
Iˆ
eaffLI a
eEjˆ eje0
af af
2 X s
+ Ra
– Vˆ
ˆ Generator a
Eaf
sites.google.com/site/ncpdhbkhn 21
Equivalent Circuits (3)
ˆˆ ˆˆ ˆˆˆˆ
VRIjXIEaaasaaf VRIjXIEaaasaaf
ˆ ˆ
Ia Ia
X s X s
+
Ra + Ra
–
ˆ – ˆ
Va Va
ˆ Motorˆ Generator
Eaf Eaf
ˆˆ ˆˆˆˆ3 ˆˆ
VRIaaasaafaaaealaaaafjXI E V RI j LLIE 0
2
XLal al : the armature leakage reactance
X X al
+ Ra 3
– XL : the effective magnetizing reactance
Eˆ ˆ aa0
R Va 2
Eˆ Eˆ : the air-gap voltage
af R
sites.google.com/site/ncpdhbkhn 22
Equivalent Circuits (4)
Ex.
A 50-Hz, three – phase synchronous motor has a terminal voltage of 380V (line –
line) & a terminal current of 100A at a power factor of 0.96 lagging. The field –
current is 38A. The machine synchronous reactance is 1.68Ω. Calculate:
a) The generated voltage Eaf; b) The mutual inductance Laf; c) The electrical power?
VRIˆˆjXI ˆˆ E
aaasaaf ˆˆ ˆ
Eaf VasajXI
Ra 0
ˆ
Va 380 / 3 220V, line-to-neutral
1oˆ o
pf0.96 lagging cos (0.96) 16.3 Ia 100 16.3 A
ˆ o o
Ejaf 220 1.68(100 16.3 ) 236.4 43.0 V
Eaf 236.4 V
eaLIff 2Eaf 2 236.4
Eaf Laf 28.0mH
2 e I f 50 2 38
PVIpfin 3 a a 3 236.4 100 0.96 68.08kW
sites.google.com/site/ncpdhbkhn 23
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances and Equivalent
Circuits
3. Performance Characteristics
a) Open – Circuit Saturation Characteristic and No –
Load Rotational Losses
b) Short – Circuit Characteristic and Load Loss
c) Steady – State Power – Angle Characteristics
d) Steady – State Operating Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 24
Open – Circuit Saturation Characteristic
and No – Load Rotational Losses (1)
• The open – circuit saturation Air – gap line
characteristic (a.k.a. the open – circuit occ
saturation curve, OCC) of a synchronous Rated
machine is a curve of the open – circuit voltage
armature terminal voltage as a function of
the field excitation when the machine is
running at synchronous speed.
• It represents the relation between he
space – fundamental component of the air
– gap flux and the mmf acting on the Field current
magnetic circuit when the field winding
creates the only mmf source. Open – circuit armature voltage 0 b a
• It is initially linear (the air – gap line) as the field current is increased from
zero.
• The air – gap line represents the machine open – circuit voltage characteristic
corresponding to unsaturated operation.
• OCC is a measurement of the relationship between the field current If & the
generated voltage Eaf, providing a direct measurement of the field – to –
armature mutual inductance Laf.
sites.google.com/site/ncpdhbkhn 25
Open – Circuit Saturation Characteristic
and No – Load Rotational Losses (2)
• The open – circuit saturation
characteristic (a.k.a. the open –
circuit saturation curve, OCC) of a
synchronous machine is a curve of
the open – circuit armature terminal
voltage as a function of the field
excitation when the machine is
running at synchronous speed.
• The no – load rotational losses: the Open – circuit loss core
mechanical power required to drive 0 Open – circuit voltage
the synchronous machine during the
open – circuit test.
• These losses consist of:
– Friction loss: constant
– Windage loss: constant
– Core loss: a function of the flux
sites.google.com/site/ncpdhbkhn 26
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances and Equivalent
Circuits
3. Performance Characteristics
a) Open – Circuit Saturation Characteristic and No –
Load Rotational Losses
b) Short – Circuit Characteristic and Load Loss
c) Steady – State Power – Angle Characteristics
d) Steady – State Operating Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 27
Short – Circuit Characteristic and
Load Loss (1)
• The short – circuit Air – gap line
occ
characteristic: ) a
)
– A plot of armature current occ
versus field current. scc
– Obtained by applying a three – scc
phase short circuit to the
armature terminals of a b
(ordinates for
ordinates for
synchronous machine, with the (
machine driven at synchronous Open – circuit voltage
speed. 0 f 0’
Short – circuit armature current
Field excitation
VRIjXIEˆˆˆˆ
aaasaafERjXIˆˆ()
ˆ af a s a
Va 0
sites.google.com/site/ncpdhbkhn 28
Short – Circuit Characteristic and
Load Loss (2)
Air – gap line
occ
ERjXIˆˆ() ) a
R aala )
occ
ˆˆ scc
ERaf() ajXI s a scc
Ra 0 b
(ordinates for
ordinates for
(
ˆ Open – circuit voltage
EVaf a, air gap
0 f 0’
Short – circuit armature current
IIˆ Field excitation
a a, short circuit ˆ
Ia
Vaag,
X s, unsaturated X X al
+ R
Iasc, a
– ˆ
ER
ˆ
Eaf
sites.google.com/site/ncpdhbkhn 29
Short – Circuit Characteristic and
Load Loss (3)
p Air – gap line
occ occ
)
) a
)
Va,rated )
occ
scc occ
scc
scc
scc
Ia,rated
c b
Ia
(ordinates for
(ordinates for
ordinates for
(ordinates for
(
Open – circuit voltage
Open – circuit voltage
0 0’ 0 f 0’
Short – circuit armature current
f ' f '' Short – circuit armature current
Field excitation Field excitation
Varated,
X s
Ia
Of Amperes Field No Load
Short Circuit Ratio
Of Amperes Field Short Circuit
sites.google.com/site/ncpdhbkhn 30
Short – Circuit Characteristic and
Ex. Load Loss (4)
Given data taken from the open- and short-circuit characteristics of a three-phase, Y-
connected, 220-V synchronous machine:
The open – circuit characteristic: line-to-line voltage = 220V; field current = 2.84A
The short – circuit characteristic: Armature current, A 118 152
Field current, A 2.20 2.84
The air – gap line: field current = 2.20A; line-to-line voltage = 202V.
Find the unsaturated value of the synchronous reactance, and the short-circuit ratio?
202
V 116.7V
aag, 3
Vaag, 116.7
X su, 0.987Ω/phase
Iasc, 118
2.84
SCR 1.29
2.20
sites.google.com/site/ncpdhbkhn 31
Short – Circuit Characteristic and
Load Loss (5)
• The machine flux level is low the core loss is
negligible.
• The mechanical power (A) required to drive the
synchronous machine consists of:
– Friction & windage losses (B), and
– Losses caused by the armature current (C).
• C = A – B: the short – circuit load loss.
• The short – circuit load loss consists of:
– I2R loss in the armature winding, and
– Local losses by the armature leakage flux, and
– The very small core loss caused by the resultant flux.
sites.google.com/site/ncpdhbkhn 32
Short – Circuit Characteristic and
Load Loss (6)
RT234.5
T
Rtt 234.5
short circuit load loss
R
aeff, ()short circuit armature current 2
sites.google.com/site/ncpdhbkhn 33
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances and Equivalent
Circuits
3. Performance Characteristics
a) Open – Circuit Saturation Characteristic and No –
Load Rotational Losses
b) Short – Circuit Characteristic and Load Loss
c) Steady – State Power – Angle Characteristics
d) Steady – State Operating Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 34
Steady – State Power – Angle
Characteristics (1) Iˆ R X
ˆˆˆ ˆ ˆ
ER12()jXI E E1 E2
ˆˆ
EE12 ˆ
Iˆ E1
R jX
jXIˆ
j
Ee12 E Eˆ
2 o
jZ 90
Ze
ˆ
I RIˆ
EE
12eejj() Z Z
ZZ
EE
I cos 12 cos( ) cos( )
ZZZ Z
sites.google.com/site/ncpdhbkhn 35
Steady – State Power – Angle
Characteristics (2) Iˆ R X
EE12
I cos cos(Z ) cos( Z ) ˆ ˆ
ZZ E1 E2
PEI22 cos
ˆ
R E1
cos( ) cos
ZZZ jXIˆ
2
EE12 E 2 R Eˆ
P cos( ) 2 o
2 Z 2 90
Z Z
Iˆ
o1 R RIˆ
ZZ90 tan
X
2
EE12 E 2 R
P2 sin( Z )
Z Z 2
2
EE12 E 1 R
P1 sin(Z )
Z Z 2
sites.google.com/site/ncpdhbkhn 36
Steady – State Power – Angle
Characteristics (3) Iˆ R X
EE E2 R
P 12sin( ) 1
1 Z 2 Eˆ Eˆ
Z Z 1 2
2
EE12 E 2 R
P2 sin(Z ) Eˆ
Z Z 2 1
jXIˆ
ZX ˆ
RZ E2
90o
Z 0
Iˆ ˆ
EE RI
PP 12sin
12 X
(Power –angle characteristic)
If 90o
EE
PP 12
1,max 2,max X
sites.google.com/site/ncpdhbkhn 37
Steady – State Power – Angle
Characteristics (4)
Iˆ R X
X s X eq
+ ˆ +
–
– Va
Eˆ Eˆ
1 2 Eˆ Vˆ
af eq
Generator
Thevenin equivalent
for the external system
EE12 EVaf eq
PP12 sin P sin
X XXseq
EVaf eq
Pmax
XXseq
sites.google.com/site/ncpdhbkhn 38
Steady – State Power – Angle
Ex. 1 Characteristics (5)
Given a 2000-hp, 2300-V, unity-power-factor, three-phase, Y-connected, 30-pole, 60-
Hz synchronous motor has a synchronous reactance of 1.95 Ω/phase. It is supplied
with power directly from a 60-Hz, 2300-V infinite bus. Its field excitation is
constant. All losses are neglected. Find the maximum power & torque which this
motor can deliver?
P 2000 0.746 1492 kVA ˆ
three phase Ia
1492
X sm
Pa 497 kVA + R
3 a
– ˆ
Va
2300 ˆ
V 1328 V Eafm
a 3
Pa 497
PVIaaacos VI aaIa 374A
Va 1328
2222
EVXIafm a() sm a 1328 (1.95 374) 1515V
sites.google.com/site/ncpdhbkhn 39
Steady – State Power – Angle
Ex. 1 Characteristics (6)
Given a 2000-hp, 2300-V, unity-power-factor, three-phase, Y-connected, 30-pole, 60-
Hz synchronous motor has a synchronous reactance of 1.95 Ω/phase. It is supplied
with power directly from a 60-Hz, 2300-V infinite bus. Its field excitation is
constant. All losses are neglected. Find the maximum power & torque which this
motor can deliver?
VEaafm1328V; 1515V
VEaafm 1328 1515
Pa,max 1032 kW
X sm 1.95
PPthree phase,max3 a ,max 3 1032 3096kW
2 2
2608rad/s
sepoles 30
3
Pthree phase,max 3096 10
Tmax 123.2 kNm
s 8
sites.google.com/site/ncpdhbkhn 40
Steady – State Power – Angle
Ex. 2 Characteristics (7)
Given a 2000-hp, 2300-V, unity-power-factor, three-phase, Y-connected, 30-pole, 60-
Hz synchronous motor has a synchronous reactance of 1.95 Ω/phase. It is supplied
with power from a three-phase, Y-connected, 2300-V, 1500-kVA, 2-pole, 3600 r/min
turbin generator whose synchronous reactance is 2.65 Ω/phase. Find the maximum
power & torque which could be supplied?
VEaafma1328V; 1515V; I 374A Iˆ
a X X
22 sg sm
EjXIVˆˆˆEXIV() + +
afg sg a a afg sg a a ˆ
–
– Va
22
Eafg (2.65 374) 1328 1657V ˆ Eˆ
Eafg afm
EEafg afm 1657 1515
Pmax 546kW
XXsg sm 2.65 1.95
Pthree phase,max 3 546 1638kW
P 1638 103
T three phase,max 65.2 kNm
max 8
s sites.google.com/site/ncpdhbkhn 41
Synchronous Machines
1. Introduction to Polyphase Synchronous Machines
2. Synchronous – Machine Inductances and Equivalent
Circuits
3. Performance Characteristics
a) Open – Circuit Saturation Characteristic and No –
Load Rotational Losses
b) Short – Circuit Characteristic and Load Loss
c) Steady – State Power – Angle Characteristics
d) Steady – State Operating Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient – Pole
Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 42
Steady – State Operating
Iˆ
Characteristics (1) a
X s
ˆˆˆ + R
EjXIVaf s a a a
– Vˆ
P jQ ˆ a
VIˆˆ P jQ Iˆ Eaf
aa a ˆ
Va
PjQ
EjXˆˆ V Q
af sˆ a
Va Field heating limit
ˆˆ ˆ2 Machine rating
EVaf a jXP s()() jQ V a
P
ˆˆ 2 0
EVaf a jXP s XQ s V a
VEaaf
22 22 X s
()()(EVaf a XP s XQ s V a ) Armature
heating limit
22
2
VIaa
2 Va VEaaf
PQ 2
Va
XXss
X s
sites.google.com/site/ncpdhbkhn 43
Steady – State Operating
Iˆ
Characteristics (2) a
X s
+ Ra
– Vˆ
ˆ a
Eaf
Q
Field heating limit
Machine rating
0 P
VEaaf
X
s Armature
heating limit
VIaa
V 2
a
X s
sites.google.com/site/ncpdhbkhn 44
Steady – State Operating
Ex. Characteristics (3)
Data are losses of a 45-kVA synchronous
motor, the terminal voltage is 220V, the
power factor is 0.80 lagging, If = 5.50A,
the armature & field windings are at a
temperature of 75oC. Find its losses?
45000
I 118.1A
a 220 3
R 234.5 75
f R 35.5
29.8 234.5 25 f
R 234.5 75
a R 0.0339Ω/phase
0.033 234.5 25 a
22
IRff5.50 35.5 1.07 kW
22
3IRaa 3 118.1 0.0399 1.67 kW
sites.google.com/site/ncpdhbkhn 45
Synchronous Machines
1. Introduction to Polyphase Synchronous
Machines
2. Synchronous – Machine Inductances and
Equivalent Circuits
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient –
Pole Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 46
Effect of Salient Poles (1)
Fundamental
Axis of field pole field flux
Actual
field flux
Direct axis
ˆ
Quadrature axis f Armature surface
ˆ
Ia
Eˆ
af Pole
ˆ
ar
Fundamental Actual
armature flux armature flux
sites.google.com/site/ncpdhbkhn 47
Effect of Salient Poles (2)
Fundamental
Fundamental field flux
field flux Fundamental
Actual armature flux Actual
field flux field
Actual flux
armature
flux
Armature surface Armature surface
Pole
Third harmonic armature flux
Fundamental Actual
armature flux armature flux
sites.google.com/site/ncpdhbkhn 48
Effect of Salient Poles (3)
Fundamental
field flux
Fundamental
armature flux Actual
Axis of field pole field
Actual flux
armature
flux
Direct axis
ˆ Armature surface
f
Quadrature axis
Eˆ ˆ
af ar
ˆ
Ia Third harmonic armature flux
sites.google.com/site/ncpdhbkhn 49
Effect of Salient Poles (4)
ˆ
ar
ˆ
ad
ˆ
Iq ˆ
Eaf
ˆ
aq Quadrature axis
ˆ ˆ
R Id
ˆ
Ia
ˆ
f
Direct axis
sites.google.com/site/ncpdhbkhn 50
Effect of Salient Poles (5)
Iˆ ˆ
q Eaf Quadrature axis
ˆ ˆ
Va jXIqq X : Direct – axis synchronous reactance
d
X : Quadrature – axis synchronous reactance
Iˆ RIˆ jXIˆ q
d ˆ aa dd
Ia
ˆˆ ˆ ˆ ˆ
Direct axis EafVRI a a a jXI d d jXI q q
ˆ
Eaf DE jX Iˆ
F qd
Iˆ G
q ˆ
A Va ˆ
E EFjXI qq
D
Iˆ
Iˆ a DF DE EF jX() Iˆˆ I jX I ˆ
d C ˆ qd q qa
B RIaa
ˆˆ ˆ
AFVaaaqa RI jXI
ˆˆ ˆ ˆ
The sum(VRIjXIaaaqa )locates the angular position of the generated voltage Eaf
sites.google.com/site/ncpdhbkhn 51
Effect of Salient Poles (6)
Ex. 1
Given a salient – pole synchronous generator, its reactances Xd & Xq are 1.00 & 0.60
per unit, respectively, Rarmature ≈ 0, power factor is 0.85 lagging. Compute the
generated voltage?
ˆˆ ˆ ˆ
The sum(VRIjXIaaaqa )locates the angular position of the generated voltage Eaf
1o
cos (0.85) 31.8 Eˆ
F af
j31.8o ˆ G
Ieˆ 1.00 Iq
a Vˆ
A a E
ˆˆ
AFVaqa jXI D
Iˆ
o Iˆ a
1.00je 0.60 1.00 j31.8 d C ˆ
B RIaa
o
1.41e j21.2 21.2o
oo o
IIdasin(21.2 31.8 ) 1.00sin53 0.80
oo o
IIqacos(21.2 31.8 ) 1.00cos53 0.60
sites.google.com/site/ncpdhbkhn 52
Effect of Salient Poles (7)
Ex. 1
Given a salient – pole synchronous generator, its reactances Xd & Xq are 1.00 & 0.60
per unit, respectively, Rarmature ≈ 0, power factor is 0.85 lagging. Compute the
generated voltage?
ˆ j31.8o o o
IeIadq1.00 ; 0.80; I 0.60; 21.2 ; 31.8
Iˆ Eˆ
ˆˆ ˆ ˆ ˆ q af Quadrature
EafVRI a a a jXI d d jXI q q
Vˆ jXIˆ axis
a qq
j21.2o ˆ ˆ jXIˆ
Ieˆ 0.60 Id RIaa dd
q Iˆ
Direct axis a
ˆ jj(9021.2)oo 68.6 o
Ied 0.80 0.80 e
ˆ jjj68.6ooo 21.2 21.2
Ejejaf 1 1 0.80 0.60 0.60 e 1.73 e
sites.google.com/site/ncpdhbkhn 53
Effect of Salient Poles (8)
Ex. 2
Given a salient – pole synchronous generator, its reactances Xd = Xq = Xs = 1.00,
Rarmature ≈ 0, power factor is 0.85 lagging. Compute the generated voltage?
ˆ j31.8o
Iea 1.00
ˆˆ ˆ
EafV ajXI s a
oo
111je jj31.8 1.75 e 29.1
sites.google.com/site/ncpdhbkhn 54
Synchronous Machines
1. Introduction to Polyphase Synchronous
Machines
2. Synchronous – Machine Inductances and
Equivalent Circuits
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient –
Pole Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 55
Power – Angle Characteristics
of Salient – Pole Machines (1)
Eˆ
XXXdT d eq af SM
X eq
XXdq, ˆ
XXXqT q eq Veq
Iˆ ˆ
q Eaf Quadrature
VV sin axis
deq ˆ ˆ
Va jXIqq
Iˆ
VV cos a ˆ
qeq Iˆ jXIdd
d jXIˆ
ˆ eq q
Direct jXeq I a
P VIdd VI qq ˆ
Veq
axis ˆ
jXIeq d
VIeq dsin VI eq q cos
EVaf eq cos
EVaf eqcos XIXIV eq d d d eq cos XI dT d Id
X dT
Veq sin
VXIXIXIeqsin eq q q q qT q Iq
X qT
sites.google.com/site/ncpdhbkhn 56
Power – Angle Characteristics
of Salient – Pole Machines (2)
ˆ
Eaf SM
X eq
XXdq, ˆ
Veq
PVIeq dsin VI eq q cos
2
EVaf eq cos
I EVaf eq V eq() X dT X qT
d P sin sin 2
X dT
XXXdT2 dT qT
Veq sin
Iq
X qT
sites.google.com/site/ncpdhbkhn 57
Power – Angle Characteristics
of Salient – Pole Machines (3)
EV V2 () X X
P af eqsin eq dT qT sin 2
XXXdT2 dT qT
0.6
0.4
0.2
P 0
-0.2
-0.4
-0.6
-3 -2 -1 0 1 2 3
(rad)
sites.google.com/site/ncpdhbkhn 58
Power – Angle Characteristics
of Salient – Pole Machines (4)
EV V2 () X X
P af eqsin eq dT qT sin 2
XXXdT2 dT qT
EV
• af eq sin : for a cylindrical – rotor machine.
X dT
VX2 () X
• eq dT qT sin 2 :
2XXdT qT
– Includes the effect of salient poles.
– If XdT = XqT (uniform – air – gap machine), then it is zero.
• The characteristic for negative values of δ is the same
except for a reversal in the sign of P.
– For a generator: δ > 0
– For a motor: δ < 0
sites.google.com/site/ncpdhbkhn 59
Power – Angle Characteristics
of Salient – Pole Machines (5)
EV V2 () X X
P af eqsin eq dT qT sin 2
XXXdT2 dT qT
Generator (δ > 0):
2
dP EVaf eq V eq() X dT X qT
cos 2 cos2 0 max
dX dT2 XX dT qT
PPmax
max
Motor (δ < 0):
2
dP EVaf eq V eq() X dT X qT
cos 2 cos 2 0 max
dX dT2 XX dT qT
PPmax
max
sites.google.com/site/ncpdhbkhn 60
Synchronous Machines
1. Introduction to Polyphase Synchronous
Machines
2. Synchronous – Machine Inductances and
Equivalent Circuits
3. Performance Characteristics
4. Effects of Salient Poles
5. Power – Angle Characteristics of Salient –
Pole Machines
6. Permanent – Magnet AC Motors
sites.google.com/site/ncpdhbkhn 61
Permanent – Magnet AC Motors
• Polyphase synchronous motors
with permanent – magnet Rotor
rotors. magnetic
axis
• Similar to the synchronous a
machines discussed up to this
c t
point, with the exception that N b m 0
the field windings are replaced
Phase a
by permanent magnets can S
be analysed with the techniques b c magnetic
axis
of this chapter by assuming that a
the machine is excited by a Permanent –
field current of constant value. magnet rotor
• Frequently referred to as
“brushless motors”.
sites.google.com/site/ncpdhbkhn 62
Các file đính kèm theo tài liệu này:
- bai_giang_electromechanical_energy_conversion_chapter_iv_syn.pdf