Bài giảng Electromechanical energy conversion - Chapter III: Introduction to Rotating Machines - Nguyễn Công Phương
Magnetic Saturation
• Magnetic materials are less than ideal. As their
magnetic flux is increased, they begin to saturate.
• Therefore saturation may influence the
characteristics of the machines.
• With saturation, it is more difficult to obtain
analytical results.
• Saturation characteristics of rotating machines are
typically presented in the form of an “open –
circuit characteristic” or ”magnetization curve” or
”saturation curve”
78 trang |
Chia sẻ: linhmy2pp | Lượt xem: 223 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Electromechanical energy conversion - Chapter III: Introduction to Rotating Machines - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
ELECTROMECHANICAL ENERGY
CONVERSION
Introduction to Rotating Machines
Contents
I. Magnetic Circuits and Magnetic Materials
II. Electromechanical Energy Conversion
Principles
III.Introduction to Rotating Machines
IV. Synchronous Machines
V. Polyphase Induction Machines
VI. DC Machines
VII.Variable – Reluctance Machines and Stepping
Motors
VIII.Single and Two – Phase Motors
IX. Speed and Torque Control
sites.google.com/site/ncpdhbkhn 2
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10.Leakage Fluxes
sites.google.com/site/ncpdhbkhn 3
Elementary Concepts (1)
• In rotating machines, voltage are generated in windings
or groups of coils by rotating these windings
mechanically through a magnetic field:
– By mechanically rotating a magnetic field past the winding,
or
– By designing the magnetic circuit so that the reluctance
varies with rotation of the rotor.
• A set of such coils connected together is typically
referred to as an armature winding.
• In AC machines (e.g. synchronous or induction), the
armature winding is typically on the stationary –
portion of the motor (referred to as the stator ).
• In DC machines, the armature winding is on the
rotating portion of the motor (referred to as the rotor ).
sites.google.com/site/ncpdhbkhn 4
Elementary Concepts (2)
• Second winding(s) carrying DC currents and used
to produce the main operating flux in the machine
is called field winding
– For a DC machine, it is on the stator.
– For a synchonous machine, it is on the rotor.
– Sometimes it is a permanent magnet.
• The time – varying flux tends to induce currents,
known as eddy currents , in the electrical steel.
• There are no windings on the rotor of some
machines, such as variable reluctance machines
and stepper motors .
sites.google.com/site/ncpdhbkhn 5
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
a) AC Machines
i. Synchronous Machines
ii. Induction Machines
b) DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 6
Synchronous Machines (1)
Armature – winding
magnetic axis
• A simple, two – pole, single –
θ
phase synchronous generator. a
• The field – winding, Field
producing a single pair of winding
magnetic poles, is excited by −a
direct current conducted to it
by means of stationary carbon a
brushes which contact rotating
slip rings or collector rings . Rotor
N – turn
• The single, low – power field armature Stator
winding on the rotor; the high winding Flux paths
– power, typically multiple –
phase, armature winding on
the stator
sites.google.com/site/ncpdhbkhn 7
Synchronous Machines (2)
Armature – winding
magnetic axis
• The two coil sides (of the
θ
armature winding) a & –a a
Field
placed in diametrically winding
opposite narrow slots on the −a
inner periphery of the stator
• The conductors forming the a
coil sides are parallel to the Rotor
shaft of the machine N – turn
armature Stator
• The rotor is turned at a winding Flux paths
constant speed by a source
of mechanical power
connected to the shaft
sites.google.com/site/ncpdhbkhn 8
Synchronous Machines (3)
Armature – winding
magnetic axis
• The flux – linkages of the
armature winding change with θ
time. a
• If the flux distribution is sinusoidal
& the rotor speed is constant, then −
the resulting coil voltage will be a
sinusoidal in time.
• The frequency (Hz, cycles per a
second) of the coil voltage is the
same as the speed of the rotor
(revolutions per second).
• The electric frequency of the Stator
generated voltage is synchronized
with the mechanical speed the
name “synchronous”.
• 3000 rpm 50 Hz.
sites.google.com/site/ncpdhbkhn 9
Synchronous Machines (4)
−
a1
θ= poles θ
ae2 a
=poles × n
f e a a
2 60 1 2
B
1
0.8
0.6 − −
a1 a1 a2 a2
0.4 −
a2
0.2 θ
π 2π a , mechanical radians
0
π 4π θ
-0.2 2 ae , electrical radians
-0.4
-0.6
-0.8
-1
0 2 4 6 8 10 12
sites.google.com/site/ncpdhbkhn 10
Synchronous Machines (5)
Salient/projecting/concentrated Nonsalient/cylindrical/distributed
windings windings
poles n
−a f = ×
1 e 2 60
N
a1 a2
S
−
a2
Hydroelectric generator Steam/gas turbin generator
sites.google.com/site/ncpdhbkhn 11
Synchronous Machines (6)
−
c b −
−c a
a b S c
N a N
−b
−b′
S N a′
− −a ′ S
b c a
−c′
−a′
c b′
−a a′
−c′ −a′
′
−c −b′ b
c′ −b
c b
sites.google.com/site/ncpdhbkhn 12
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
a) AC Machines
i. Synchronous Machines
ii. Induction Machines
b) DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 13
Induction Machines
• Synchronous machines:
– Stator winding: AC current
– Rotor winding: DC current
• Induction machines:
– Stator winding: AC current
– Rotor winding: AC current
– The rotor does not itself rotate synchronously
sites.google.com/site/ncpdhbkhn 14
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
a) AC Machines
i. Synchronous Machines
ii. Induction Machines
b) DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 15
DC Machines (1)
Armature coil,
• A very elementary two N turns
– pole DC generator. Rotation N
• The two coil sides a &
–a are placed at −a
diametrically opposite −
points on the rotor with Carbon
the conductors parallel brush
to the shaft.
• The rotor is normally Copper
turned at a constant + commutator
speed by a source of a segments
mechanical power
connected to the shaft. S
sites.google.com/site/ncpdhbkhn 16
DC Machines (2)
Armature coil,
• The voltage induced in an N turns
individual armature coil is AC
rectification is required. Rotation N
• Commutator: a cylinder formed
of copper segments insulated −a
from each other by mica or
some other highly insulating −
material & mounted on (but Carbon
insulated from) the rotor shaft. brush
• Stationary carbon brushes held
against the commutator surface
connect the winding to the Copper
external armature terminals. + commutator
• Commutation is the reason why segments
the armature windings of DC a
machines are placed on the
rotor. S
sites.google.com/site/ncpdhbkhn 17
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10.Leakage Fluxes
sites.google.com/site/ncpdhbkhn 18
MMF of Distributed Windings
Flux lines
N – turn coil
carrying current i
Magnetic axis
of stator coil
θ
a
Ni
2 Fundamental Fag 1
π θ
0 a
− Ni
2
Rotor surface
Stator surface
sites.google.com/site/ncpdhbkhn 19
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
a) AC Machines
b) DC Machines
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 20
AC Machines (1)
=ωϕ ++ ωϕ ++ ωϕ ++
FtMag ( )1 cos( t 12 ) M cos(2 t 23 ) M cos(3 t 3 ) ...
= + + +
Ftag1() Ft ag 2 () Ft ag 3 ()...
4 Ni
F( t )= cos θ
ag1 π 2 a
Ni
2 Fundamental Fag 1
π θ
0 a
− Ni
2
Rotor surface
Stator surface
sites.google.com/site/ncpdhbkhn 21
AC Machines (2)
a
θ
a
Space – fundamental mmf wave
Axis of phase a
Axis of phase a
2N i
c a −
−π π a
0 θ
a
sites.google.com/site/ncpdhbkhn 22
AC Machines (3)
a
θ
a
Magnetic axis
of stator coil
Axis of phase a
θ
a
−a
4 Ni 4 kw N ph poles
F( t )= cos θ F( t )= i cos θ
ag1 π 2 a ag1 π poles a2 a
sites.google.com/site/ncpdhbkhn 23
AC Machines (4)
4 2 Nc i a o
()F =cos(θ − 22.5 ) o
ag1 22.5 o π 2 a 97.5 o 82.5
67.5 o
112.5 o a
4 2 Nc i a o θ
()F =cos(θ + 22.5 ) a
ag1 −22.5 o π a
2 22.5 o
4 2 N i
()F =c a cos(θ − 7.5o )
ag1 7.5 o π 2 a
Axis of phase a
4 2 N i
()F =c a cos(θ + 7.5o )
ag1 −7.5 o π 2 a
(F) =( F) + ( F )
ag1total ag 122.5o ag 1 − 22.5 o
− o −a −67.5 o
+()() + 112.5
Fag1o F ag 1 o
7.5− 7.5 −97.5 o −82.5 o
= θ
4.88Nc i a cos a
sites.google.com/site/ncpdhbkhn 24
AC Machines (5)
= θ
(Fag1 ) 4.88 N ca i cos a o
total 97.5 o 82.5
67.5 o
112.5 o a
→(F) = 4.88 N i θ
ag1 peak c a a
22.5 o
4 kw N ph poles
F( t )= i cos θ
ag1 π poles a2 a
Axis of phase a
4 k N i
→()F = w ph a
ag 1 peak π poles
N=8 N ; poles = 2 − o
ph c −112.5 o a −67.5
o − o
→ = −97.5 82.5
kw 0.96
sites.google.com/site/ncpdhbkhn 25
θ
AC Machines (6) r
4 k N I poles
F = r r r cos θ
ag1 π r
poles 2 9 10
8
mmf 7 1
2
6 3
N I N I
10 r 1 r 5 4
N9 I r N2 I r
N8 I r N3 I r
θ
0 r
N7 I r Space N4 I r
fundamental
mmf wave
N6 I r N6 I r
sites.google.com/site/ncpdhbkhn 26
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
a) AC Machines
b) DC Machines
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 27
DC Machines (1)
Magnetic axis of armature winding
a1
Magnetic axis of
field winding
−
a1
sites.google.com/site/ncpdhbkhn 28
DC Machines (2)
11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2
6Nc i c
4Nc i c
2Nc i c
π
0 −
2Nc i c
−
4Nc i c
−
6Nc i c
Fundamental component
Current
mmf wave
sites.google.com/site/ncpdhbkhn 29
DC Machines (3)
S
C i
()F = a a
ag peak (2)(m poles )
N N
N i C
=a a, N = a
polesa 2 m
8 N i S
()F = a a
ag 1 peak π 2 poles
sites.google.com/site/ncpdhbkhn 30
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
a) Machines with Uniforms Air Gaps
b) Machines with Nonuniform Air Gaps
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 31
Machines with Uniform Air Gaps
(1) N – turn coil
θ
F a
= ag
H ag
g r
g a
µ → ∞
Fag 1 4 Ni Magnetic axis
H = = cos θ rr
ag1 gπ 2 g a of stator coil
µ → ∞
4 Ni
()H = Fag
ag 1 peak π 2g Ni
2 Fundamental Fag 1
0 π θ
− Ni a
2
sites.google.com/site/ncpdhbkhn 32
Machines with Uniform Air Gaps
(2)
a
N – turn coil θ
a
θ
a
r
g a
µ → ∞ Axis of phase a
r Magnetic axis
r of stator coil
µ → ∞
−a
k N
= 4 Ni θ = 4 w ph poles θ
Hag1( t ) cos a H( t ) i cos
π 2g ag1 π g( poles ) a 2 a
sites.google.com/site/ncpdhbkhn 33
Machines with Uniform Air Gaps
Ex. (3)
Given a four – pole synchronous AC generator with a smooth air gap has a
distributed rotor winding with 263 series turns, a winding factor of 0.94, and an
air gap of length 0.7mm. Find the rotor – winding current to produce a peak,
space – fundamental magnetic flux density of 1.6T in the machine air gap?
4 k N 4 k N
()H= r r i →()B = µ r r i
ag1 peak π g( poles ) r ag1peak 0 π g( poles ) r
(π g ) poles
→i = () B
rµ ag 1 peak
4 0kr N r
π ×0.7 × 10−3 × 4
= 1.6
4×× 4π 10−7 × 0.94 × 263
= 11.33A
sites.google.com/site/ncpdhbkhn 34
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
a) Machines with Uniforms Air Gaps
b) Machines with Nonuniform Air Gaps
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 35
Machines with Nonuniform Air Gaps
• ×
• ×
• ×
Rotor Rotor
• ×
• ×
• ×
Stator
Stator
sites.google.com/site/ncpdhbkhn 36
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
a) MMF Wave of a Single – Phase Winding
b) MMF Wave of a Polyphase Winding
c) Graphical Analysis of Polyphase MMF
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 37
MMF Wave of a Single – Phase
Winding (1)
4 k N poles
F= w ph i cos θ
ag1 π poles a2 a
= ω
ia I acos e t
→ = poles θ ω
Fag1 F max cos ae cos t
2
4 k N
=Fcosθ cos ω tF , = w ph I
max ae e max π poles a
sites.google.com/site/ncpdhbkhn 38
MMF Wave of a Single – Phase
Winding (2)
= θ ω
Fag1 F max cos ae cos e t
1
cosαβ cos=[] cos( αβ −+ ) cos( αβ + )
2
1
→=FF[]cos(θ −+ ω t ) cos( θ + ω t )
ag12 max aee aee
+ 1
F= Fcos(θ − ω t )
ag12 max aee
− 1
F= Fcos(θ + ω t )
ag12 max ae e
sites.google.com/site/ncpdhbkhn 39
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
a) MMF Wave of a Single – Phase Winding
b) MMF Wave of a Polyphase Winding
c) Graphical Analysis of Polyphase MMF
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 40
MMF Wave of a Polyphase
Winding (1)
Axis of phase b
θ
ia ib ic a a
−c
t −b
Axis of phase a
b
c
−a
= ω Axis of phase c
ia I mcos e t
=ω − o
ib I mcos( e t 120 )
=ω + o
ic I mcos( e t 120 )
sites.google.com/site/ncpdhbkhn 41
MMF Wave of a Polyphase
Winding (2)
=+ + −
Fa1 F a 1 F a 1
+ 1
F= Fcos(θ − ω t )
a12 max ae e
− 1
F= Fcos(θ + ω t )
a12 max ae e
4 k N
F= w ph I
max π poles m
=+ + − =+ + −
Fb1 F b 1 F b 1 Fc1 F c 1 F c 1
+ 1 + 1
F= Fcos(θ − ω t ) F= Fcos(θ − ω t )
b12 max ae e c12 max ae e
− 1 − 1
F= Fcos(θ + ω t + 120o ) F= Fcos(θ + ω t − 120o )
b12 max ae e c12 max aee
sites.google.com/site/ncpdhbkhn 42
MMF Wave of a Polyphase
Winding (3)
+ F + F + F
F=max cos(θ − ω t ) F=max cos(θ − ω t ) F=max cos(θ − ω t )
a1 2 aee b1 2 ae e c1 2 ae e
− F − F − F
F=max cos(θ + ω t ) F=max cos(θ + ω t + 120o ) F=max cos(θ + ω t − 120o )
a1 2 aee b1 2 ae e c1 2 ae e
θ = + +
F(ae , tF ) a1 F b 1 F c 1
−θ = −−− + +
F(ae , tFFF ) a1 b 1 c 1
− 1
FtF(θ , )= cos( θωθω ++ t ) cos( +−+ t 120o ) cos( θω ++ t 120 o )
ae2 max ae e ae e ae e
= 0
+θ = +++ + +
F(ae , tFFF ) a1 b 1 c 1
+ 1
FtF(θ , )=[ cos( θω −+ t ) cos( θω −+ t ) cos( θω − t ) ]
ae2 max ae e ae e ae e
3
=Fcos(θ − ω t )
2 max ae e
3 3 poles
→=FtF(θ , ) cos( θω −= tF ) cos θω − t
ae2max aee 2 max 2 ae
sites.google.com/site/ncpdhbkhn 43
MMF Wave of a Polyphase
Winding (4)
3 3 poles
FtF(,)θ= cos( θω −= tF ) cos θω − t
ae2max ae e 2 max 2 a e
2
synchronous angular velocity: ω= ω
spoles e
120
synchronous speed: n= f
spoles e
sites.google.com/site/ncpdhbkhn 44
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
a) MMF Wave of a Single – Phase Winding
b) MMF Wave of a Polyphase Winding
c) Graphical Analysis of Polyphase MMF
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 45
Graphical Analysis of Polyphase
MMF
MMF of phase a
MMF of phase b
MMF of phase c
The total MMF
sites.google.com/site/ncpdhbkhn 46
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
a) AC Machines
b) DC Machines
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 47
AC Machines (1) N – turn coil
Phase b magnetic axis
Rotor – wing
4 kf N f a
B= µ i magnetic axis
peak0 π g( poles ) f +
b′
c′
θ ω t
r m
e
Phase a
magnetic
= poles θ
B B peakcos r b c axis
2 −
a′ Nf – turn
field coil
Phase c magnetic axis
π
Φ = / poles poles θ θ = 2
pl∫ B peakcos r rd r 2Bpeak lr
−π / poles 2 poles
sites.google.com/site/ncpdhbkhn 48
AC Machines (2) N – turn coil
Phase b magnetic axis
Φ = 2
p2B peak lr a Rotor – wing
poles
+ magnetic axis
′
λ = Φ ′ b
peakk w N ph p c
θ ω t
r m
e
λ= Φ poles ω
ak w N ph pcos m t Phase a
2 magnetic
b c axis
= Φ ω
kw N ph pcos me t , −
′ Nf – turn
ω= poles ω a
me m field coil
2 Phase c magnetic axis
dλ dΦ
e==a kNp cosω tkN −Φ ω sin ω t
adt wph dt me mewphp me
Φ= =−ω Φ ω
Ifp constthene a mewphp kN sin me t (electromotiveforce,emf)
sites.google.com/site/ncpdhbkhn 49
AC Machines (3) N – turn coil
Phase b magnetic axis
a Rotor – wing
magnetic axis
= −ω Φ ω +
emew kN ph psin me t b′
c′
θ ω t
r m
e
Phase a
E=ω kN Φ=2 π fkN Φ magnetic
max mew ph p mew ph p b c axis
−
a′ Nf – turn
field coil
Phase c magnetic axis
2
E=π fkN Φ=2 π fkN Φ
rms2 mewphp mewphp
sites.google.com/site/ncpdhbkhn 50
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
a) AC Machines
b) DC Machines
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 51
DC Machines
e Armature coil,
N turns
Rotation N
ωt
−
0 π 2π a
π −
=1 ω Φ ω ω
Ea∫ me N psin( me tdt )( me )
π 0 Carbon
2 brush
=ω N Φ
π me p
poles
ω= ω +
me2 m
a
→=poles Φ=ω Φ n
Ea N pm( poles ) N p
π 30 Copper
N= C/(2 m ) commutator
a a S
poles C poles C segments
→=Ea Φ=ω a Φ n
a2π m pm 60 m p
sites.google.com/site/ncpdhbkhn 52
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
a) Coupled – Circuit Viewpoint
b) Magnetic Field Viewpoint
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 53
Coupled – Circuit Viewpoint (1)
s
ω= poles ω
me2 m
r Magnetic
θ= θ axis of s
Lsr( me ) L sr cos( me )
−r θ
λ=+LiL() θ iLiL =+ cos() θ i m
s sss sr mer sss sr mer
λ=L( θ ) iLiL += cos( θ ) iLi + Magnetic
r sr mes rrr sr mes rrr −s axis of r
λ L L (θ ) i
→s = ss srme s
λ θ
r Lsr( me ) L rr ir
+
λ −
d s r + s
v= R i + −
s s s dt θ
m
dλ
v= R i + r
r r r dt
sites.google.com/site/ncpdhbkhn 54
Coupled – Circuit Viewpoint (2)
λ=+ θ =+ θ
sLiL sss sr() mer iLiL sss sr cos() mer i
λ= θ += θ +
rL sr() mes iLiL rrr sr cos() mes iLi rrr
dλ
v= R i + s
s s s dt
dλ
v= R i + r
r r r dt
di di d θ
vRiL=++s Lcos(θ ) r − Li sin( θ ) me
s ss ssdt sr me dt srr me dt
→
di di d θ
vRiL=++r Lcos(θ ) s − Li sin( θ ) me
r rr rrdt sr me dt srs me dt
sites.google.com/site/ncpdhbkhn 55
Coupled – Circuit Viewpoint (3)
1 1
W′ = Li()θ2 + L () θ iL 2 + () θ ii
fld 211 1 2 22 2 12 12
1 1
=Li2 + Li 2 + Lii cos θ
2sss 2 rrr srsr me
1 1 poles
=Li2 + Li 2 + Lii cos θ
2sss 2 rrr srsr 2 m
∂W′ (,, i i θ )
T = fld s r m
∂θ
m
is, i r are const
poles poles
= − L i i sin θ
2sr s r 2 m
poles
= − L i i sin θ
2 srsr me
sites.google.com/site/ncpdhbkhn 56
Coupled – Circuit Viewpoint (4)
poles s
T= − Lii sin θ
2 srsr me
= r Magnetic
poles 2 axis of s
→T = − Lii sin θ −r θ
sr s r m m
θ= ω + δ
m m t Magnetic
−s axis of r
= ω
is I scos e t
→=−ω ω + δ
T LIIsr s rcos e t sin( m t )
1
sinαβ cos=[] sin( αβ ++ ) sin( αβ − )
2
1
→=−TLII{}sin([][]ωωδ +++ ) t sin( ωωδ −+ ) t
2 srsr me me
sites.google.com/site/ncpdhbkhn 57
Coupled – Circuit Viewpoint (5)
1
TLII=−{}sin([][]ωωδ +++ ) t sin( ωωδ −+ ) t
2 srsr me me
ω= ω
m e
1
→=−T LII[]sin(2ω t ++ δ ) sin δ
2 srsr e
1
T= − LII sin δ
avg2 srsr
1
ωω=−→=−T LII[]sin δωδ − sin(2 t − )
me2 srsr e
1
T= − LII sin δ
avg2 sr s r
sites.google.com/site/ncpdhbkhn 58
Coupled – Circuit Viewpoint (6)
di di d θ
vRiL=++s Lcos(θ ) r − Li sin( θ ) me
s ss ssdt sr me dt srr me dt
di di d θ
vRiL=++r Lcos(θ ) s − Li sin( θ ) me
r rr rrdt sr me dt srs me dt
= ω
is I scos e t
θ= θ = ω + δ
e m m t
=−ω ωω − ωδ +
es esss LIsin e tLI esrr sin( e t )
→=−ω[ ω ωδ ++ ωωδ + ]
eLIr esrssin( e t )cos( e t ) cos( e tt )sin( e )
= −ω ω + δ
esrsL Isin(2 e t )
sites.google.com/site/ncpdhbkhn 59
Coupled – Circuit Viewpoint (7)
= θ
= = Laf L afcos2 m
Laa L bb L cc
= = =θ − o
Lab L bc L ca Lbf L bfcos(2 m 120 )
=θ + o
I = const Lcf L cfcos(2 m 120 ) ω
f s
=ω + δ
ia I acos( e t )
=ω −o + δ
ib I bcos( e t 120 )
=ω +o ++ δ
ic I ccos( e t 120 )
1 1
Wii′ (,,)θ= L () θ i2 + L () θ iL 2 + () θ ii
fld 1 22 11 1 2 22 2 12 1 2
′ θ =1 2 +++++ 2 2 +
Wiiiifldabcf(,,,,) m ( Li aaa Li bbb Li ccc ) Lii abab Lii bcbc Lii caca
2 θ
independent of m
+θ + θ + θ
Laf() maf iiL bf () mbf iiL cf () mcf ii
=1 2 +++++ 2 2 +
(Liaa a Li bb b Li cc c ) Lii ab a b Lii bc b c Lii ca c a
2 θ
independent of m
cos2θωδ cos(t++ ) cos(2 θ − 120o )cos( ω t −++ 120 o δ )
+ L I I me m e
af a f +θ +o ω ++ o δ
cos(2m 120 )cos( e t 120 )
sites.google.com/site/ncpdhbkhn 60
Coupled – Circuit Viewpoint (8)
′ θ =1 2 +++++ 2 2 +
Wiiiifldabcf(,,,,) m ( Li aaa Li bbb Li ccc ) Lii abab Lii bcbc Lii caca
2 θ
independent of m
cos2θωδ cos(t++ ) cos(2 θ − 120)cos(o ω t −++ 120 o δ )
+ L I I me m e
af a f +θ +o ω ++ o δ
cos(2m 120)cos( e t 120 )
=1 2 +++++ 2 2 +
(Liaaa Li bbb Li ccc ) Lii abab Lii bcbc Lii caca
2 θ
independent of m
3
+LIIcos(2θ − ω t − δ )
2 af a f m e
∂W ′
T = fld
∂θ
m
ia, i bc , i , i f are const
=−θ −− ω δ
3LIIaf a f sin(2 m e t )
→ = δ
ω T3 LIIaf a f sin
If θ= ω t = e t
m s 2
2 120
The synchronous speed:ω= ω (rad/s), orn = f (r/min)
spoles e s poles e
sites.google.com/site/ncpdhbkhn 61
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
a) Coupled – Circuit Viewpoint
b) Magnetic Field Viewpoint
8. Linear Machines
9. Magnetic Saturation
10. Leakage Fluxes
sites.google.com/site/ncpdhbkhn 62
Magnetic Field Viewpoint (1)
Fr
δ
• Currents in the machine windings create sr
magnetic flux in the air gap. F
• Torque is produced by the tendency of s
the two component magnetic fields to Stator
line up their magnetic axes.
• Mutual flux : produced by the stator &
rotor winding, crosses the air gap &
links both windings.
• Rotor leakage flux & stator leakage
flux : some of the flux that does not cross
the air gap.
• Only the mutual flux is of direct
concern in torque production.
sites.google.com/site/ncpdhbkhn 63
Magnetic Field Viewpoint (2)
Fr
= δ δ
Hag g F sr( sr ) sr
F
=2 + 2 + δ s
Fsr F s F r2 FF sr cos sr
Stator
F
()H = sr
ag peak
g Fr
Fsr
δ δ
Frsin sr δ sr
µ r
0 2 = δ
Coenergy density of the air-gap : H Fsrsin s δ
2 ag s
Fs
F sin δ
µ (H ) 2 s sr
0 ag peak = δ
Average coenergy density : Fsrsin r
2 2
2
µ F
→ Average coenergy density : 0 sr
4 g
sites.google.com/site/ncpdhbkhn 64
Magnetic Field Viewpoint (3)
Fr
µ 2
0 Fsr δ
Average coenergy density : sr
4 g
′ = × Fs
W fld (averagecoenergydensity) (volumeof air gap)
2 Stator
µ F µ π Dl
=0 sr × ()π = 0 2
Dlg Fsr
4 g 4g
=2 + 2 + δ
Fsr F s F r2 FF sr cos sr
µ π Dl
→=W′ 0 ( FFFF2 ++ 2 2 cosδ )
fld4g s r sr sr
∂W′ µ π Dl
T=fld = − 0 F F sin δ
two− pole ∂δ s r sr
sr 2g
Fs, F r are const
µ π
= − poles0 Dl δ
Tmultipole Fs F rsin sr
2 2 g
sites.google.com/site/ncpdhbkhn 65
Magnetic Field Viewpoint (4)
Fr
δ
poles µ π Dl sr
T= − 0 F F sin δ
multipole sr sr F
2 2 g s
Stator
δ
• sr is the electrical space – phase angle between the rotor & stator mmf
waves.
• The torque T acts in the direction to accelerate the rotor.
δ
• When sr is positive, the torque is negative & the machine is operating as a
generator.
δ
• When sr is negative, the torque is positive & the machine is operating as a
motor.
• The torque is proportional to the peak values of the stator– & rotor–mmf
δ
waves Fs & Fr, and to the sine of the electrical space – phase angle sr
between them.
• Minus sign: the fields tend to align themselves.
• Equal & opposite torques are exerted on the stator & rotor.
sites.google.com/site/ncpdhbkhn 66
Magnetic Field Viewpoint (5)
Fr
poles µ π Dl δ
= − 0 δ sr
Tmultipole Fs F rsin sr
2 2 g
Fs
poles
T= − Lii sin θ Stator
multipole2 sr s r me
poles µ π Dl
= − 0 δ Fr
T Fs F srsin s Fsr
2 2 g δ δ
Frsin sr δ sr
r
poles µ π Dl = F sin δ δ
= − 0 δ sr s s
Frsr F sin r F
2 2 g s
F sin δ
µ s sr
Fsr0 F sr gB sr = F sin δ
H=→= B →= F sr r
sr sr sr µ
g g 0
poles π Dl
→T = − B F sin δ
2 2 srr r
sites.google.com/site/ncpdhbkhn 67
Magnetic Field Viewpoint (6)
Ex.
A 2400 r/min, four – pole, 50 Hz synchronous motor has an air – gap length of 1mm.
The average diameter of the air – gap is 27 cm, & its axial length is 32 cm. The rotor
winding has 800 turns & a winding factor of 0.976. The maximum rotor current is
18A, the maximum Bsr = 2T, find the maximum torque & power output?
4 k N I poles
F = r r r cos θ
r π poles 2 r
4k N ( I ) 4 0.976× 800 × 18
→()F = r r r max = = 4474A
r max π poles π 4
poles π Dl
T= − B F sin δ
2 2 sr r r
π π × ×
→ = poles Dl =4 0.27 0.32 × =
Tmax Bsr( F r ) max 2 4474 2429Nm
2 2 2 2
π π
P= ω T = n T = 2400 2429 = 610kW
maxm max s 30 max 30
sites.google.com/site/ncpdhbkhn 68
Magnetic Field Viewpoint (7)
Φ = ×
p (average value of B over a pole) (pole ar ea)
π
=2 ×Dl = 2 Dl
Bpeak B peak
π poles poles
poles π Dl
T= − B F sin δ
2 2 sr r r
π poles 2
= − Φ F sin δ
2 2 sr r r
sites.google.com/site/ncpdhbkhn 69
Torque in Nonsalient – Pole Machines
poles
T= − Lii sin θ
2 srsr me
µ π
= − poles0 Dl δ
T Fs F rsin sr
2 2 g
poles π Dl
T= − B F sin δ
2 2 sr r r
π poles 2
T= − Φ F sin δ
2 2 sr r r
The torque is proportional to the product of the magnitudes
of the interacting fields, and to the sine of the electrical
space angle between their magnetic axes
sites.google.com/site/ncpdhbkhn 70
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10.Leakage Fluxes
sites.google.com/site/ncpdhbkhn 71
Linear Machines (1)
• The most widely known use of linear motors is
in the transportation field:
– The moving vehicle: the AC “stator”, and
– The rails: the conducting stationary “rotor”.
• Also in the machine tool industry & in
robotics.
• The analysis of linear machines is quite similar
to that of rotating mchines:
– Angle displacement, and
– Torque force.
sites.google.com/site/ncpdhbkhn 72
Linear Machines (2)
4 Ni F 4 Ni
F = cos θ →H =ag 1 = cos θ
ag1 π 2 a ag1 gπ 2 g a
π
θ = 2 z
a β
4Ni 2 π z
→H = cos
ag 1 π2g β
Fag
Ni
2 Fundamental Fag 1
0 β / 2 z
− Ni
2
g
sites.google.com/site/ncpdhbkhn 73
Linear Machines (3)
4Ni 2 π z
H = cos (concentrated)
ag 1 π2g β
4k N i 2 π z
H = w ph cos (distributed)
ag 1 π2 pg β
= ω
ia I mcos e t
=ω − o
ib I mcos( e t 120 )
=ω + o
ic I mcos( e t 120 )
π
→+ =3 2 z − ω
FztF( , )max cos e t
2 β
4 k N ω β
F=w ph Iv, =e = f β
max π2p m 2 π e
sites.google.com/site/ncpdhbkhn 74
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10.Leakage Fluxes
sites.google.com/site/ncpdhbkhn 75
Magnetic Saturation
• Magnetic materials are less than ideal. As their
magnetic flux is increased, they begin to saturate.
• Therefore saturation may influence the
characteristics of the machines.
• With saturation, it is more difficult to obtain
analytical results.
• Saturation characteristics of rotating machines are
typically presented in the form of an “open –
circuit characteristic” or ”magnetization curve” or
”saturation curve”.
sites.google.com/site/ncpdhbkhn 76
Introduction to Rotating
Machines
1. Elementary Concepts
2. Introduction to AC and DC Machines
3. MMF of Distributed Windings
4. Magnetic Fields in Rotating Machinery
5. Rotating MMF Waves in AC Machines
6. Generated Voltage
7. Torque in Nonsalient – Pole Machines
8. Linear Machines
9. Magnetic Saturation
10.Leakage Fluxes
sites.google.com/site/ncpdhbkhn 77
Leakage Fluxes
+
− λ
λ 3 −
+ 2
Coil 3
Coil 2
ϕ ϕ
12 13
ϕ
123
I Coil 1
1 ϕ
1l
+ λ −
1
sites.google.com/site/ncpdhbkhn 78
Các file đính kèm theo tài liệu này:
- bai_giang_electromechanical_energy_conversion_chapter_iii_in.pdf