Bài giảng Electric circuit theory - Chapter XII: Magnetically Coupled Circuits - Nguyễn Công Phương
Transformers (15) • Applications: – Power supply transformers – Transformers in power systems – Isolation applications – Impedance matching
Bạn đang xem trước 20 trang tài liệu Bài giảng Electric circuit theory - Chapter XII: Magnetically Coupled Circuits - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
Electric Circuit Theory
Magnetically Coupled Circuits
Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoidal Steady State Analysis
X. AC Power Analysis
XI. Three-phase Circuits
XII.Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV. Two-port Networks
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 2
Magnetically Coupled Circuits
1. Mutual Inductance
2. Dot Convention
3. Analysis of Magnetically Coupled Circuits
4. Energy in a Coupled Circuit
5. Transformers
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 3
Mutual Inductance (1)
it()
+
+
– v
–
N turns
d ddi di
Faraday’s law: vN N L
dt di dt dt
d
LN
di
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 4
Mutual Inductance (2)
it1() L1 L2
12
+ +
11
+ di
– 1
v1 v2 M 21
–
– dt
N1 turns N2 turns
11112
d d
vN 1 vN 12
11dt 22dt
ddi11 di 1 ddi12 1 di 1
NL11 NM221
di1 dt dt di1 dt dt
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 5
Mutual Inductance (3)
it1() L1 L2
12
+ + di1
11 vL1
+ dt
– v1 v2 di
–
– vM 1
221dt
N1 turns N2 turns
L1 L2 it2 ()
21
+
di2 +
vM112 +
dt 22
v1 v2 –
–
di –
vL 2
2 dt
N1 turns N2 turns
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 6
Mutual Inductance (4)
it1() L1 L2
12
+ +
11
+ di1
– vM221
v1 v2
–
– dt
N1 turns N2 turns
it1() 12
v v
1 2
11
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 7
Mutual Inductance (5)
it1() 12 it1() 12
di1 di1
v1 vM2 v1 vM2
11 dt 11
dt
it()
it1() 12 1 12
di di
1 v vM 1
v1 vM2 1 2
11 dt 11 dt
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 8
Magnetically Coupled Circuits
1. Mutual Inductance
2. Dot Convention
3. Analysis of Magnetically Coupled Circuits
4. Energy in a Coupled Circuit
5. Transformers
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 9
Dot Convention (1)
it() M
• If a current enters a dotted 1
terminal of one coil, it induces +
+
a positive voltage at the dotted – L v
1 L2 2
terminal of the second coil –
di1
• If a current leaves a dotted vM2
terminal of one coil, it induces dt
a negative voltage at the dotted
terminal of the second coil
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 10
Dot Convention (2)
it() M
• If a current enters a dotted 1
terminal of one coil, it induces +
+
a positive voltage at the dotted – L v
1 L2 2
terminal of the second coil –
di1
• If a current leaves a dotted vM2
terminal of one coil, it induces dt
a negative voltage at the dotted
terminal of the second coil
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 11
Dot Convention (3)
it() M
• If a current enters a dotted 1
terminal of one coil, it induces +
+
a positive voltage at the dotted – L v
1 L2 2
terminal of the second coil –
di1
• If a current leaves a dotted vM2
terminal of one coil, it induces dt
a negative voltage at the dotted
terminal of the second coil
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 12
Dot Convention (4)
it() M
• If a current enters a dotted 1
terminal of one coil, it induces +
+
a positive voltage at the dotted – L v
1 L2 2
terminal of the second coil –
di1
• If a current leaves a dotted vM2
terminal of one coil, it induces dt
a negative voltage at the dotted
terminal of the second coil
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 13
Dot Convention (5)
M M
it1() it2 () it1() it2 ()
+
+ – +
+
+ R R
R1 2 R1 2
–
– L L
1 L2 1 L2
–
–
– +
e1 e1
di di di di
vL21 M vL21 M
22dt dt 22dt dt
M M
it1() it2 () it1() it2 ()
+
+
– +
+ R + R
R1 2 R1 2
–
L – L
1 L2 1 L2
–
–
+ –
e1 e1
di di di di
vL21 M vL21 M
22dt dt 22dt dt
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 14
Magnetically Coupled Circuits
1. Mutual Inductance
2. Dot Convention
3. Analysis of Magnetically Coupled Circuits
4. Energy in a Coupled Circuit
5. Transformers
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 15
Analysis of Magnetically Coupled Circuits (1)
M jM
it1() it2 () I1 I2
+ +
+
+ R R
R1 2 R1 2
–
– L
1 L2 jL 1 jL 2
–
e1 – E1
di di
vL12 M VIIjL jM
11dt dt 1112
di di
vL21 M VIIjL jM
22dt dt 2221
ZM jM
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 16
Analysis of Magnetically Coupled Circuits (2)
Ex. 1
o jM
E1 100 0 V; 100 rad/s; I1 I2
–
LLM120.2 H; 0.3H; 0.1H; +
+ R R
RR30 ; 40 ; Find currents? 1 2
12 –
jL 1 jL 2
+
E1 –
VIM 12 jM
VI111L jL RjLjM11IIIE 11 2 1
VVVRLM11 1 E 1
VIM 21 jM
VI222L jL RjLjM22III 22 1 0
VVVRLM22 2 0
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 17
Analysis of Magnetically Coupled Circuits (3)
Ex. 1
o jM
E1 100 0 V; 100 rad/s; I1 I2
–
LLM120.2 H; 0.3H; 0.1H; +
+ R R
RR30 ; 40 ; Find currents? 1 2
12 –
jL 1 jL 2
+
E1 –
RjLjM11IIIE 11 2 1
RjLjM22III 22 1 0
o
30III112jj 100 0.2 100 0.1 100 0 I1 10A
I j20A
40III221jj 100 0.3 100 0.1 0 2
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 18
Analysis of Magnetically Coupled Circuits (4)
Ex. 1
o jM
E1 100 0 V; 100 rad/s; I1 I2
–
LLM120.2 H; 0.3H; 0.1H; +
+ R R
RR30 ; 40 ; Find currents? 1 2
12 –
jL 1 jL 2
+
E –
VIVIMM1221jM ; jM 1
VVVRLM11 1 E 1
VVVRLM22 2 0
1. Write voltages of mutual inductance
RjLjM11IIIE 11 2 1
2. Assign signs at dotted terminals
RjLjM22III 22 1 0 (using dot convention)
3. Write KVL equations
I1 10A
4. Write the set of equations & solve
for it
I2 j20A
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 19
Analysis of Magnetically Coupled Circuits (5)
Ex. 2
+
+
–
Find current? –
0.2 H 0.4 H j62.8 j125.6
+
0.1H + j31.4
–
311cos314t V –
60 311 60 I
jjj62.8II 31.4 125.6 III j 31.4 60 311
1. Write voltages of mutual inductance
o
I 2.23 64.5 A 2. Assign signs at dotted terminals
(using dot convention)
3. Write KVL equations
it2.23cos(314 64.5o ) A 4. Write the set of equations & solve
for it
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 20
Analysis of Magnetically Coupled Circuits (6)
Ex. 3
Find current? 0.2 H 0.4 H
+ 0.1H
– 60 311cos314t V
60
I 1A 60
DC 60
(jjj 62.8 31.4 125.6 j 31.4 60)I AC 311 +
– 60
I
o 60 DC
I AC 2.23 64.5 A
+
+
–
–
o
itAC 2.23cos(314 64.5 ) A j62.8 j125.6
+ j31.4
o –
iIDC i AC 1 2.23cos(314 t 64.5 ) A
311 60 I AC
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 21
Analysis of Magnetically Coupled Circuits (7)
Ex. 4
V1M Z
I1 – + abI3 3
VZI12MM Z I
E 1 + 4
1 Z2
VZI +
21MM Z V2M
– M
– Z4 J
III1230
+ I2
IIJ0 –
34 E2
c
VVZMZM11 VV 2 2 EE 12
ZI ZI ZI ZI 1. Write voltages of mutual inductance
11MM 2 2 2 1 2. Assign signs at dotted terminals
EE12 (using dot convention)
3. Write KVL equations
VVZM22 VVE 34 2
4. Write the set of equations & solve
ZI22 ZM I 1 ZI 33 ZI 44 E 2 for it
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 22
Analysis of Magnetically Coupled Circuits (8)
Ex. 5
V1M Z
I1 + – abI3 3
Z1 – I4
VZI12MM E
1 Z2
+ Z V2M
– M
+ Z4 J
VZI21MM
+ I2
E2 –
c
III1230
IIJ340
VVZMZM11 VV 2 2 EE 12ZI11 ZIMM 2 ZI 2 2 ZI 1 E 1 E 2
ZI Z I ZI ZI E
VVZM22 VVE 34 2 22M 1 33 44 2
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 23
Analysis of Magnetically Coupled Circuits (9)
Ex. 6 V3M
I1 abI3– +
Z
Z1 + 3 I4
VZI23MM E
1 Z2
+ V2M Z
– M
– Z4 J
VZI32MM
+ I2
E2 –
c
III123 0
IIJ34 0
ZI11 ZI 2 2 ZM I 3 E 1 E 2
ZI22 ZMM I 3 ZI 33 Z I 2 ZI 44 E 2
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 24
Analysis of Magnetically Coupled Circuits (10)
Ex. 4 V1M
+ – abZ3
Z
E 1 +
VZII()1 Z2
1M MA B + Z V2M
– M – Z J
VZI 4
2M MA +
IA IB
E2 –
c
VVZMZM11 VV 2 2 EE 12
ZI1212AMAB Z()() I I Z I AB I Z MA I E E
VVZM22 VVE 34 2
ZII2342()BA ZIZIZIJE MAB () B
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 25
Analysis of Magnetically Coupled Circuits (11)
Ex. 5 V1M
– + abZ3
Z
E 1 –
VZII()1 Z2
1M MA B + Z V2M
– M + Z J
VZI 4
2M MA +
IA IB
E2 –
c
VVZMZM11 VV 2 2 EE 12
ZI1212A Z MAB()() I I Z I AB I Z MA I E E
VVZM22 VVE 34 2
ZII2342()BA ZIZIZIJE MAB () B
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 26
Analysis of Magnetically Coupled Circuits (12)
Ex. 6 V
+ 3M –
Z Z3
E 1 +
VZI 1 Z2
2M MB + V2M Z
– – M Z J
VZII() 4
3M MA B +
IA IB
E2 –
c
VVV122M EE 12
ZI12AABMB Z() I I Z I E 12 E
VVZMZM22 VV 33 VE 4 2
ZI233442()BA I ZI MBZBMAB ZIZ ()() I I ZI J E
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 27
Analysis of Magnetically Coupled Circuits (13)
1. Write voltages of mutual inductance
2. Assign signs at dotted terminals (using dot convention)
3. Write KVL equations (branch current method or mesh
current method)
4. Write the set of equations & solve for it
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 28
Analysis of Magnetically Coupled Circuits (14)
Ex. 7
I j10
Find the Thevenin equivalent subcircuit? 1
+
+
+ 30
VI j10 –
M 21 j20 j30 E
– eq
100 –
EVeq M 21j10 I
(30j 20)I 100
1 Zeq
+
I1 2.31 j 1.54 A
–
Eeq
Eeq 15.38 j 23.08V
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 29
Analysis of Magnetically Coupled Circuits (15)
Ex. 8
I j10
Find the Thevenin equivalent subcircuit? 1
+
E –
Z eq + 30
eq – J
j20 + j30 eq
Jeq –
100
(30jj 20)IJ1 10eq 100
jj10IJ1 30eq 0
Zeq
Jeq 0.85 j 0.47 A
+
15.38 j 23.08 –
Zeq 2.31 j 28.46 E
0.85 j 0.47 eq
EZeq 15.38jj 23.08V; eq 2.31 28.46
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 30
Magnetically Coupled Circuits
1. Mutual Inductance
2. Dot Convention
3. Analysis of Magnetically Coupled Circuits
4. Energy in a Coupled Circuit
5. Transformers
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 31
Energy in a Coupled Circuit
M
it1() it2 ()
+
+ R
R1 2
– L
1 L2
e1 –
11
wLiLiMii22
2211 2 2 12
M kLL12
01 k
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 32
Magnetically Coupled Circuits
1. Mutual Inductance
2. Dot Convention
3. Analysis of Magnetically Coupled Circuits
4. Energy in a Coupled Circuit
5. Transformers
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 33
Transformers (1)
VII1112jL jM
L
VIIjL j M 2 N N
2121VVV211 n 1 2
L1
IfkMLL 1 12
V L
22 n
V11L
I1 I2
+
d +
vN11 N N
dt vN22 V22N 1 2 V
n n V1 2
–
d vN V N –
vN 11 11
22dt
iv21 I21N 1
p12pvivi 1122
iv12 I12Nn
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 34
Ex. 1 Transformers (2)
Given an ideal step-down transformer rated at 22/0.4 kV, 1000 turns
on the primary side. Find:
a) The turn ratio?
b) The number of turns on the secondary side?
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 35
Transformers (3)
I1 I2 I1 I2 I1 I2
+ + +
+ + +
N1 N2 N1 N2 N1 N2
V1 V2 V1 V2 V1 V2
– –
–
–
– –
VINN
2221;
VII1112jL jM VII1112jL jM
VI1112NN
VII2121jL jM VII2121jL jM
I1 I2
M LL12
+
+
V22N
p12 p n
V N N1 N2
V N 11 V V
22 1 2
n –
I21N 1 –
V11N
I Nn
I N 1 12 VINN
21 2221;
I12Nn VI1112NN
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 36
Transformers (4)
I1 I2 I1 I2
• If v & v are both
+ +
+ 1 2 +
N N positive or both N N
1 2 V 1 2 V
V1 2 negative at the V1 2
–
–
–
– dotted terminals,
VI1 VI1
22n; use +n. 22 n;
VIn
VI11n Otherwise, use –n 11
I I I I
1 2 • If i1 & i2 both 1 2
+
+
+
+ enter into or both
N1 N2 leave the dotted N1 N2
V1 V2 V1 V2
–
–
–
– terminals, use –n.
VI1 Otherwise, use +n VI1
22n; 22 n;
VI11n VI11n
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 37
Transformers (5) I1 I2
+
a +
+ R1
Vab V1 –
–
Zin – Z
E1 b 2
II11
I1 I2
+
VV / n +
12 a
Zin
II12 n
–
b – Z2
VZI222
I1
Z2 a
+ R
Zin 1
2 – Z
n in
E1 b
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 38
Ex. 2 Transformers (7)
I1 I2
+
Given an ideal transformer, find currents if +
o
+ R
E1 100 0 V;nR 5;12 6 ; R 100 ? R1 2
– V V
1– 2
Method 1 –
E1
R11IVE 1 1
VIR 0
222 I1 I2
+
6100IV 0o +
11 N N
V 1 2 V
I 1 2
–
1 –
5V1 100 0
5
VI221
I1 n;
I 10A I 2A VI11n
1 2 5
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 39
Ex. 2 Transformers (8)
I1 I2
Given an ideal transformer, find currents if
o
+ R
E1 100 0 V;nR 5;12 6 ; R 100 ? R1 2
Method 2 –
E1
R 100
Z 2 4
in n2 25
I1
E1 100
I1 10A
RZ64 +
1 in R1
– Zin
E
II11 1
n 52AI2
I2 5
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 40
I I
Ex. 3 Transformers (9) 1 2
+
Given an ideal transformer, find currents if +
+ R R2
o 1
E1 100 0 V;nR 5;12 6 ; R 100 ; – V V
1– 2
E –
Z3 j20 ? 1
R11IVZII 1 3() 1 2 E 1
II Z3
VIZII222312R ()0 12
I1 o
6IV11j 20 I 1 100 0 I I
5 1 2
+
+
II
11 N N
5VI11 100j 20 0 V 1 2 V
55 1 2
–
–
I1 3.79 j 4.85A
VI221
I1 n;
I2 1.90 j 2.43A VI11n
5 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 41
Ex. 4 Transformers (10)
R4
I1 I2
+ R
R1 2
–
E1
Z3
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 42
Transformers (11)
I
d 1
vNN()
112dt V NN +
112
d N I2
vN V21N 1
22 +
dt V1
I N N2 V
12 – 2
pp12 –
I212NN
I2
I +
VI11112NNN 1
; N1
VINN N V
2122 1 + N 2
V 2
–
1 –
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 43
Ex. 5 Transformers (12)
I
Given an ideal autotransformer, find currents 1
o +
if E1 100 0V;Zj2 5 10?
I2
+ 10 turns
V112NN10 90
+
10 – V
V N 10 1
21 E 90 turns V Z
– 2 2
1 –
V 100 0o I
V 1 10 0Vo 3
2 10 10
o
V2 10 0
I2 0.40j 0.80A
Z2 510 j
I12N 90
0.9 II120.9 0.36 j 0.72 A
I212NN10 90
III3120.040 j 0.080A
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 44
Transformers (13)
1:n
+
+
I primary Isecondary
Vprimary Vsecondary
–
–
VVsecondary n primary
I
I primary
secondary n
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 45
Transformers (14)
I primary Isecondary
+
+
Vprimary Vsecondary
–
–
VVsecondary n primary
I
I primary
secondary n
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 46
Transformers (15)
• Applications:
– Power supply transformers
– Transformers in power systems
– Isolation applications
– Impedance matching
Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 47
Các file đính kèm theo tài liệu này:
- bai_giang_electric_circuit_theory_chapter_xii_magnetically_c.pdf