Bài giảng Electric circuit theory - Chapter VIII: Second Order Circuits - Nguyễn Công Phương
1. Write the general form
2. Find the initial conditions
3. Find the forced response
4. Find the natural response
a. find the characteristic equation
b. solve the cha. equ.
c. write the natural response
(depends on the cha. roots)
5. Find the integration constants
6. Write the complete response
45 trang |
Chia sẻ: linhmy2pp | Ngày: 19/03/2022 | Lượt xem: 203 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Electric circuit theory - Chapter VIII: Second Order Circuits - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Electric Circuit Theory
Second-Order Circuits
Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoidal Steady State Analysis
X. AC Power Analysis
XI. Three-phase Circuits
XII. Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV. Two-port Networks
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 2
Second-Order Circuits
1. The Source-Free Series RLC Circuit
2. Initial Conditions
3. The Characteristic Equation
4. The Classical Method
5. Second-Order Op Amp Circuits
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 3
v
The Source-Free Series RLC Circuit (1) + –
R E
vVE(0)==0 ;(0) iI ==
0+ 0 + R L C
RR0 RR 0 i
R
2 E 0
di 1 t di Rdi i A
Ri+ L + idt = 0 → + + = 0 + –
∫−∞ 2
dt C dt Ldt LC t = 0
st
i= Ae B
R A st 2 R 1
→Ase2 st + A se st + e st = 0 →Ae s ++ s = 0 R 1
L LC L LC →+s2 s + = 0
L LC
i= Ae st ≠ 0
2
R R 1
s =−+ − =−+α α2 − ω 2
1 2L 2 L LC 0
→ → =st1 + st 2
it( ) Ae1 Ae 2
2
=−−R R −1 =−−α α2 − ω 2
s2 0
2L 2 L LC
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 4
v
The Source-Free Series RLC Circuit (2) + –
R E
vVE(0)==0 ;(0) iI ==
0+ 0 + R L C
RR0 RR 0 i
R
E 0
di 1 t A
RiL+ + idt = 0 + –
∫−∞
dt C t = 0
B
R 1
→+s2 s + = 0
L LC
→ =st1 + st 2
it( ) Ae1 Ae 2
i(0) = Ae0 + Ae 0 = I
1 2 0 A
→ 1
A
=st1 + st 2 =+ 2
i'(0) ( Ase11 Ase 22) As 11 As 22
t=0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 5
v
The Source-Free Series RLC Circuit (3) + –
it( ) = Aest1 + Ae st 2
1 2 L C
R i
2 R
R R 1 2 2 E 0
s =−± − =−±α α − ω A
1,2 2L 2 L LC 0 + –
R 1 t = 0
α=, ω = B
2L 0 LC
α> ω α= ω αω< =−± αω
0 : 0 : 0,s 1,2 j d :
−α
=st1 + st 2 = + st =ω + ω t
it( ) Ae1 Ae 2 it()( A1 Ate 2 ) it() ( A1 cosd tA 2 sin d te )
i( t ) i( t ) i( t )
t
t t 0
0 0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 6
v
+ –
R E
vVE(0)==0 ;(0) iI ==
0+ 0 + R L C
RR0 RR 0 i
R
E 0
di 1 t A
RiL+ + idt = 0 + –
∫−∞
dt C t = 0
B
R 1
→+s2 s + = 0
L LC
st st Initial Conditions
→ =1 + 2
it( ) Ae1 Ae 2
i(0) = Ae0 + Ae 0 = I
1 2 0 A
→ 1
A
=st1 + st 2 =+ 2
i'(0) ( Ase11 Ase 22) As 11 As 22
t=0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 7
Second-Order Circuits
1. The Source-Free Series RLC Circuit
2. Initial Conditions
3. The Characteristic Equation
4. The Classical Method
5. Second-Order Op Amp Circuits
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 8
Initial Conditions (1) v
Ex. 1 + –
di(0) dv (0) 25 Ω 5H
Find i(0), v (0), , ? i 50mF
dt dt
30V A 5Ω
− 30
i(0)= i (0) = = 1A + –
25+ 5 t = 0
B
− 5
v(0)= v (0 ) = 30 = 5V
25+ 5
di di (0)
255i+ + v = 0 →25(0)i + 5 += v (0) 0
dt dt
di (0) 25× 1 + 5
→ =− =− 6 A/s
dt 5
− dv − dv (0) dv (0) 1
i =50 × 10 3 →i(0) = 50 × 10 3 → = = 20 V/s
dt dt dt 50× 10 −3
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 9
Initial Conditions (2) t = 0
Ex. 2 A
di(0) dv (0) 4Ω
Find i(0), v (0), , ? B
dt dt +
+ –
6Ω 0.1F
− 12
i(0)= i (0) = = 3A v 12V
4 i 0.5H
–
v(0)= v (0− ) = 12V
di di (0) di (0) 12
0.5=v → 0.5 = v (0) → = = 24 A/s
dt dt dt 0.5
12
3+
v dv v(0) dv (0) dv (0)
+0.1 +i = 0 →+0.1 +=i (0) 0 → =−6 =− 50V/s
6 dt 6 dt dt 0.1
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 10
Initial Conditions (3)
Ex. 3 t = 0
di(0) dv (0)
Find i(0), v (0), , ? 4Ω 2Ω
dt dt + +
− 6Ω 1mF v –
i(0)= i (0 ) = 4A 0.01H i –
− 6+ 4 4A 24V
v(0)= v (0) = 24 = 20V
+ +
6 4 2 i4 i2
i= i + i
4 6 i
6 4Ω 2Ω
− dv + +
i= i + 10 3
2 4 dt 0.01H i 6Ω 1mF v –
–
di
0.01= 6 i 24V
dt 6
+ − =
4i4 6 i 6 v 0
+ =
2i2 v 24
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 11
Initial Conditions (4)
Ex. 3 i4 i2
di(0) dv (0)
Find i(0), v (0), , ? i6 4Ω 2Ω
dt dt + +
− 0.01H i 6Ω 1mF v –
i(0)= i (0 ) = 4A –
− 6+ 4 24V
v(0)= v (0) = 24 = 20V
6+ 4 + 2
i= i + i = +
4 6 i4(0) i (0) i 6 (0)
−3 dv
= + −3 dv (0)
i2 i 4 10 i(0)= i (0) + 10
dt 2 4 dt
di
= di (0)
0.01 6 i6 =
dt 0.01 6i6 (0)
dt
4i+ 6 i − v = 0 + − =
4 6 4i4 (0) 6 i 6 (0) v (0) 0
+ = 2i (0)+ v (0) = 24
2i2 v 24 2
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 12
Initial Conditions (5)
Ex. 3 i4 i2
di(0) dv (0)
Find i(0), v (0), , ? i6 4Ω 2Ω
dt dt + +
− 0.01H i 6Ω 1mF v –
i(0)= i (0 ) = 4A –
− 6+ 4 24V
v(0)= v (0) = 24 = 20V
6+ 4 + 2
= + = +
i4(0) i (0) i 6 (0) i4(0) 4 i 6 (0)
= + −3 dv (0) = + −3 dv (0)
i2(0) i 4 (0) 10 i2(0) i 4 (0) 10
dt dt dv (0) = −
2400 V/s
di (0) di (0) dt
0.01= 6i (0) 0.01= 6i (0) →
6 6 di (0)
dt dt = 240 A/s
+ − = + − =
4i4 (0) 6 i 6 (0) v (0) 0 4i4 (0) 6 i 6 (0) 20 0 dt
+ = + =
2i2 (0) v (0) 24 2i2 (0) 20 24
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 13
Initial Conditions (6)
Ex. 3 t = 0
i(0)
0.01H 4Ω 2Ω 4Ω 2Ω
+
+ + +
–
6Ω – 6Ω v
1mF v(0) i 1mF
– 0.01H –
4A 24V 4A 24V
1. Consider the old state’s circuit
i(0)= i (0− ) = 4A (switch is on the old position)
2. Find iL(0) & vC(0)
− 6+ 4 3. Consider the new state’s circuit
v(0)= v (0) = 24 = 20V
6+ 4 + 2 (switch moved to the new position)
4. Write the branch current equations,
di dv
with vL=& iC =
Ldt C dt
5. Consider the moment t = 0
6. Find di (0)/ dt & dv (0)/ dt
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 14
Initial Conditions (7)
i i
Ex. 3 4 2 t = 0
i i6 4Ω 2Ω 4Ω 2Ω
+
+ + +
–
6Ω 1mF v – 6Ω 1mF v
– 0.01H i –
0.01H 24V 4A 24V
= + 1. Consider the old state’s circuit
i4 i i 6 (switch is on the old position)
− dv 2. Find i (0) & v (0)
i= i + 10 3 L C
2 4 dt dv (0) = − 3. Consider the new state’s circuit
2400 V/s
di dt (switch moved to the new position)
0.01= 6 i →
6 di (0) 4. Write the branch current equations,
dt = 240 A/s di dv
with vL=& iC =
+ − = dt L C
4i4 6 i 6 v 0 dt dt
5. Consider the moment t = 0
+ =
2i2 v 24 6. Find di (0)/ dt & dv (0)/ dt
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 15
Initial Conditions (8)
Ex. 4
1H
diL(0) dv C (0) 30 Ω
Find iL(0), v C (0), , ? 1mF
dt dt 10 Ω +
20 Ω –
+ 120V
− 120 –
i (0 )= = 3A 2 1
L 10+ 30 40V
→ =− =
iL(0) i L (0 ) 3A
1H 30 Ω
1mF
10 Ω +
− = = × = 20 Ω –
vC( 0) v R 1 10 3 30V
120V
→ =− =
vC(0) v C (0 ) 30V 1
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 16
Initial Conditions (9)
Ex. 4
1H
diL(0) dv C (0) 30 Ω
Find iL(0), v C (0), , ? 1mF
dt dt 10 Ω +
− − = 20 Ω –
iL i2 i 3 0
+ 120V
–
iL + + +=
L Ri1L Ri 22 v C E 2 2 1
dt 40V
−− + =−
vC Ri22 Ri 33 E 1 E 2 i3
dv
i= C c
2 dt 1H 30 Ω
dv
−c − = 1mF
iL C i 3 0
dt 10 Ω +
20 Ω –
iL i2
diL dv c
→ ++ += +
L RiRC1L 2 v C E 2 120V
dt dt –
2
dv 40V
−−v RCc + Ri =− E E
C 2dt 3312
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 17
Initial Conditions (10)
Ex. 4
i(0)= 3A; v (0) = 30V
di(0) dv (0) L C i3
Find i(0), v (0),L , C ?
L C dt dt
1H 30 Ω
−dv c − = 1mF
iL C i 3 0
dt +
10 Ω
i 20 Ω –
diL++ dv c += L i2
L RiRC1L 2 v C E 2
dt dt + 120V
dv –
−−v RCc + Ri =− E E 2
C 2dt 3312 40V
dv (0) − dv (0)
i(0)− Cc − i (0)0 = 310−3 C −i (0)0 =
1dt 3 dt 3
→diL(0) ++ dv c (0) += →×diL (0) +×+×−3 dv C (0) −=
L Ri1L(0) RC 2 v C (0) E 2 1 1032010 3040
dt dt dt dt
dv (0) − dv (0)
−−v(0) RCc + Ri (0) =− EE 30−× 20 103 C + 30(0)i =− 120 40
C 2dt 33 12 dt 3
di(0) dv (0)
→L =24A/s; C = 800V/s
dt dt
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 18
v
+ –
R E
vVE(0)==0 ;(0) iI ==
0+ 0 + R L C
RR0 RR 0 i
R
E 0
di 1 t A
RiL+ + idt = 0 + –
∫−∞
dt C t = 0
B
R 1
→+s2 s + = 0
L LC
st st Characteristic Equation
→ =1 + 2
it( ) Ae1 Ae 2
i(0) = Ae0 + Ae 0 = I
1 2 0 A
→ 1
A
=st1 + st 2 =+ 2
i'(0) ( Ase11 Ase 22) As 11 As 22
t=0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 19
Second-Order Circuits
1. The Source-Free Series RLC Circuit
2. Initial Conditions
3. The Characteristic Equation
4. The Classical Method
5. Second-Order Op Amp Circuits
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 20
The Characteristic Equation (1)
R L + C
i v
–
R Ls
di 1
Ri+ L +∫ idt = 0 + a
dt C I( s ) 1
V( s )
i= Ae st ab Cs
− b
d( Ae st ) 1
→+RAest L +∫ Ae st = 0
dt C =++1 =
Vsab () RLs Is () ZsIsab ()()
Cs
st 1
→Ae R ++ Ls = 0 =
Cs Vab ( s ) 0
st
i= Ae ≠ 0 I( s )≠ 0
1 1
→+R Ls + = 0 →Zs()0 =→++ RLs = 0
Cs ab Cs
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 21
Ex. 1 The Characteristic Equation (2) t = 0
A
Find the characteristic equation?
4Ω
B
1 +
0.5 s 2
0.3s+ 0.5 s + 6 + –
Z =6 +0.1 s = 6Ω 0.1F
ab 1 2 + 12V
0.5 s + 0.05s 1 v
0.1 s i 0.5H
–
=→2 + +=
Zab 0 0.3 s 0.5 s 6 0
1 60.5×s 0.3 s2 + 0.5 s + 6
Z = + =
cd 0.1s 6+ 0.5 s 0.1(0.5 ss + 6)
a c e
=→2 + +=
Zcd 0 0.3 s 0.5 s 6 0
1 b d f
6 2
0.3s+ 0.5 s + 6
Z=0.5 s +0.1 s = 6
ef 1 + 1
6 + 0.6s 1 0.5 s
0.1 s 0.1 s
=→2 + +=
Zef 0 0.3 s 0.5 s 6 0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 22
Ex. 2 The Characteristic Equation (3)
t = 0
Find the characteristic equation?
4Ω 2Ω
+ +
4 2 6Ω 1mF v –
0.01H i
0.01 s 6 –
1 4A 24V
10 −3 s
1. Consider the new state’s circuit
a b
(switch moved to the new position)
1
2 2. Deactivate all sources (if any)
6× 0.01 s −3
Z = +4 + 10 s 3. Transform elements to s-domain
ab + 1
6 0.01 s 2 + 1
−3 R→ RL; → LsC ; →
10 s Cs
2× 10−4s 2 + 0.168 s + 36 4. Select any 2 neighbouring points
= a & b on a wire segment
(0.01s+ 6)(0.02 s + 1)
5. Calculate Zab (s)
=→×−4 2 + += 6. Let Z (s) = 0
Zab 0 2 10 s 0.168 s 36 0 ab
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 23
The Characteristic Equation (4)
2
R 1 R R 1
s2 + s + = 0 →=−±s − =−±α α2 − ω 2
L LC 1,2 2L 2 L LC 0
R 1
α=, ω =
2L 0 LC
α> ω =st1 + st 2
0 : xt( ) Ae1 Ae 2
α= ω = + st
0 : xt()( A1 Ate 2 )
α< ω =−± α ω =ω + ω −αt
0,s 1,2 j d : xt() ( A1 cosd tA 2 sin d te )
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 24
Second-Order Circuits
1. The Source-Free Series RLC Circuit
2. Initial Conditions
3. The Characteristic Equation
4. The Classical Method
5. Second-Order Op Amp Circuits
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 25
The Classical Method (1)
v
+ – RL RL
L C i i
R i f + C n + C
v v
R0 f n
E0 A – –
+ – E E
t = 0 + –
E B
+ –
if, v f in, v n
= + v(0)
i if i n + –
= + R L C
v vf v n i(0)
R0
E0 A
+ –
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 26
The Classical Method (2)
Ex. 1 = +
i if i n
Find i(t)? v 1. Write the general form
+ – 2. Find the initial conditions i(0)= 1A; v (0) = 5V
25 Ω 5H 3. Find the forced response
i 5Ω 50mF 4. Find the natural response
30V A a. find the characteristic equation
+ – b. solve the cha. equ.
t = 0
c. write the natural response
24V B
+ – (depends on the cha. roots)
5. Find the integration constants
v 6. Write the complete response
+ –
5H 30
25 Ω i i(0)= = 1A
5Ω 50mF 25+ 5
30V A 5
+ – v(0)= 30 = 5V
25+ 5
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 27
The Classical Method (3)
Ex. 1 = +
1. Write the general form i if i n
Find i(t)? v di (0)
+ – 2. Find the initial conditions ii(0)(0)== 1A; 1A; v (0) = − = 1.2 5V A/s
dt
3. Find the forced response i = 0
25 Ω 5H f
i 5Ω 50mF 4. Find the natural response
30V A a. find the characteristic equation
+ – b. solve the cha. equ.
t = 0
c. write the natural response
24V B
+ – (depends on the cha. roots)
5. Find the integration constants
5H 6. Write the complete response
di di (0)
25 Ω i + 50mF 25i+ 5 + v = 24 →25i (0) + 5 += v (0) 24
v dt dt
di (0)
24V – → = − 1.2A/s
dt
+ – =
i f 0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 28
The Classical Method (4)
Ex. 1 = +
1. Write the general form i if i n
Find i(t)? v di (0)
+ – 2. Find the initial conditions i(0)= 1A; = − 1.2 A/s
dt
3. Find the forced response i = 0
25 Ω 5H f
i 5Ω 50mF 4. Find the natural response
30V A a. find the characteristic equation
+ – b. solve the cha. equ.
t = 0
c. write the natural response =−4t + − t
24V B in Ae1 Ae 2
+ – (depends on the cha. roots)
5. Find the integration constants
25 5s 6. Write the complete response
1
1 =++ = →2 + +=
Zab 25 5 s −3 0 0.25s 1.25 s 1 0
−3 50× 10 s
50× 10 s
→ =− =− → =−4t + − t
s14; s 2 1 in Ae1 Ae 2
a b
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 29
The Classical Method (5)
Ex. 1 = +
1. Write the general form i if i n
Find i(t)? v di (0)
+ – 2. Find the initial conditions i(0)= 1A; = − 1.2 A/s
dt
3. Find the forced response i = 0
25 Ω 5H f
i 5Ω 50mF 4. Find the natural response
30V A a. find the characteristic equation
+ – b. solve the cha. equ.
t = 0
c. write the natural response =−4t + − t
24V B in Ae1 Ae 2
+ – (depends on the cha. roots)
= =
5. Find the integration constants A10.067; A 2 0.933
6. Write the complete response
=0 + 0 =
i(0) Ae1 Ae 2 1 A = 0.067
→ 1
di (0) 0 0 =
=−4Ae − Ae =− 1.2 A2 0.933
dt 1 2
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 30
The Classical Method (6)
Ex. 1 = +
1. Write the general form i if i n
Find i(t)? v di (0)
+ – 2. Find the initial conditions i(0)= 1A; = − 1.2 A/s
dt
3. Find the forced response i = 0
25 Ω 5H f
i 5Ω 50mF 4. Find the natural response
30V A a. find the characteristic equation
+ – b. solve the cha. equ.
t = 0
c. write the natural response =−4t + − t
24V B in Ae1 Ae 2
+ – (depends on the cha. roots)
= =
5. Find the integration constants A10.067; A 2 0.933
6. Write the complete response
it()=+ 0 0.067 e−4t + 0.933 e − t = 0.067 e − 4 t + 0.933 e − t A
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 31
v
Ex. 1 The Classical Method (7) + –
25 Ω 5H
i 5Ω 50mF
it( )= 0.067 e−4t + 0.933 e − t A
30V A
+ –
i t = 0
24V B
+ –
1A
0 0A t
25 Ω 5H
i(0) 5Ω 25 Ω 25 Ω 5H
in 50mF if
30V A
+ –
B 24V B
+ –
= =−4t + − t =
i(0) 1A in Ae1 Ae 2 i f 0
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 32
Ex. 1 The Classical Method (8)
it( )= 0.067 e−4t + 0.933 e − t A
1
0.9
0.8
0.7
0.6
0.5
0.4
Current(A)
0.3
0.2
0.1
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (ms)
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 33
Ex. 2 The Classical Method (9) t = 0
A
Find v(t)? = +
v vf v n 4Ω
B
=− =12 = =− = +
i(0) i (0 ) 3A; v(0) v (0 ) 12 V + –
4 2Ω 0.1F
v 12V
v+ dv + = →+v(0) dv (0) +=
0.1i 0 0.1i (0) 0 i 1.6H
2 dt 2 dt –
+ 12
dv (0) 3
→ =−2 =− 90V/s PPP 1. Write the general form
dt 0.1 PPP 2. Find the initial conditions
= PPP 3. Find the forced response
v f 0
4. Find the natural response
1 2× 1.6s 0.32 s2 + 1.6 s + 2 PPP a. find the characteristic equation
Z = + =
+ + PPP b. solve the cha. equ.
0.1s 2 1.6 s 0.1 ss (1.6 2) c. write the natural response
PPP
Z=→0 0.32 s2 + 1.6 s += 2 0 (depends on the cha. roots)
5. Find the integration constants
→ = =− → = + −2.5 t 6. Write the complete response
s1 s 2 2.5 vn ( A1 Ate 2 )
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 34
Ex. 2 The Classical Method (10) t = 0
A
Find v(t)? = +
v vf v n 4Ω
B
dv (0) +
v(0)= 12V; = − 90V/s + –
2Ω 0.1F
dt 12V
− v
v=0; v = ( AAte + ) 2.5 t
f n 1 2 i 1.6H
= + =+ + −2.5 t –
vvf v n 0 ( AAte1 2 )
=+0 ==
v(0)( AAe1 2 0) A 1 12 PPP 1. Write the general form
dv d − PPP 2. Find the initial conditions
=(12 + A t ) e 2.5 t
dt dt 2 PPP 3. Find the forced response
4. Find the natural response
=−−2.5t + − 2.5 t − − 2.5 t
30e A2 e 2.5 A 2 te PPP a. find the characteristic equation
PPP b. solve the cha. equ.
dv (0) =−0 + 0 − ××=− 0
30eAe2 2.5 A 2 0 e 90 c. write the natural response
dt PPP (depends on the cha. roots)
→ = −
A2 60 PPP 5. Find the integration constants
6. Write the complete response
→vt( ) = (12 − 60 te )−2.5 t V PPP
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 35
Ex. 2 The Classical Method (11)
vt( )= (12 − 60 te )−2.5 t V
12
10
8
6
4
2
Voltage (V) Voltage
0
-2
-4
-6
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (ms)
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 36
Ex. 3 The Classical Method (12)
=+ = + t = 0
Find i(t) & v(t)? iifn ivv; fn v
4Ω 2Ω
− + +
i(0)= i (0 ) = 4A
6Ω 1mF v –
0.01H i
− 6+ 4 –
v(0)= v (0 ) = 24 = 20V 4A 24V
6+ 4 + 2
= +
i4 i i 6
− dv
i= i +1 × 10 3
2 4 dt dv (0) = −
2400 V/s
di → dt
0.01= 6 i i4 i2
6 di (0)
dt = 240 A/s
i
dt 6 4Ω 2Ω
+ − = +
4i4 6 i 6 v 0 +
0.01H i 6Ω 1mF v –
+ =
2i2 v 24 –
24V
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 37
Ex. 3 The Classical Method (13)
=+ = + t = 0
Find i(t) & v(t)? iifn ivv; fn v
= = 4Ω 2Ω
i(0) 4A; v (0) 20V + +
di(0) dv (0) 6Ω 1mF v –
=240 A/s; = − 2400V/s 0.01H i
dt dt –
24 4 4A 24V
i = = 4A; v =24 = 16V
f 4+ 2 f 4+ 2
1
2 4Ω 2Ω
× −3 + +
=6 0.01 s ++10 s =
Z 4 0 –
ab 0.01H if 6Ω 1mF vf
6+ 0.01 s + 1
2 − –
10 3 s 24V
s= −4.2 + j 0.6
→ 1
= − −
s2 4.2 j 0.6 4 2
= + −4.2 t 0.01 s 6
in ( A1 cos 0.6 tA 2 sin 0.6 te ) 1
→ −
= + −4.2 t 10 3 s
vBn (1 cos0.6 tB 2 sin 0.6 te )
Second-Order Circuits - sites.google.com/site/ncpdhbkhna b 38
Ex. 3 The Classical Method (14)
=+ = + t = 0
Find i(t) & v(t)? iifn ivv; fn v
= = 4Ω 2Ω
i(0) 4A; v (0) 20V + +
di(0) dv (0) 6Ω 1mF v –
=240 A/s; = − 2400V/s 0.01H i
dt dt –
24 4 4A 24V
i = = 4A; v =24 = 16V
f 4+ 2 f 4+ 2
=+−4.2t =+ − 4.2 t
iAn (12 cos0.6 tA sin0.6) te ; vBn ( 12 cos0.6 tB sin0.6) te
=+=+ + −4.2 t
iiif n 4 ( A1 cos0.6 tA 2 sin 0.6 te )
=+ +0 =
i(0) 4 ( A1 cos 0 Ae 2 sin 0) 4
=
di (0) A1 0
= + −+0 →
(A1 cos0 A 2 sin0)( 4.2 e ) =
dt A2 400
+− +0 =
( 0.6A1 sin0 0.6 A 2 cos0) e 240
→i =4 + 400 e−4.2 t sin0.6 t A
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 39
Ex. 3 The Classical Method (15)
=+ = + t = 0
Find i(t) & v(t)? iifn ivv; fn v
= = 4Ω 2Ω
i(0) 4A; v (0) 20V + +
di(0) dv (0) 6Ω 1mF v –
=240 A/s; = − 2400V/s 0.01H i
dt dt –
24 4 4A 24V
i = = 4A; v =24 = 16V
f 4+ 2 f 4+ 2
=+−4.2t =+ − 4.2 t
iAn (12 cos0.6 tA sin0.6) te ; vBn ( 12 cos0.6 tB sin0.6) te
=+=+ + −4.2 t
vvvf n 16 ( B1 cos0.6 tB 2 sin0.6) te
=+ +0 =
v(0) 16 ( B1 cos0 Be 2 sin 0) 20
=
dv (0) B1 4
= + −+0 →
(B1 cos0 B 2 sin0)( 4.2 e ) = −
dt B2 3944
+− +0 =−
( 0.6B1 sin0 0.6 B 2 cos0) e 2400
→=+v16 (4cos 0.6 t − 3944sin 0.6 te )−4.2 t V
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 40
Ex. 3 The Classical Method (16)
v=16 + (4cos0.6 t − 3944sin 0.6 te )−4.2 t V
50
0
-50
-100
Voltage (V) Voltage
-150
-200
0 500 1000 1500 2000 2500 3000
Time (ms)
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 41
Second-Order Circuits
1. The Source-Free Series RLC Circuit
2. Initial Conditions
3. The Characteristic Equation
4. The Classical Method
5. Second-Order Op Amp Circuits
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 42
Second-Order Op Amp Circuits (1)
Ex.
10k Ω a
t = 0 + 10k Ω
Find v(t)? = + b
v vf v n –
+
= = +
va (0) 0; v (0) 0
– 4V 20 µF v
v− v −
b = × 6 dv
100 10 100 µF –
10× 10 3 dt
=
va v b
v− v − dv v(0)− v (0) − dv (0) dv (0)
→a =100 × 10 6 →a =100 × 10 6 → = 0
10× 10 3 dt 10× 10 3 dt dt
= = =
dv vf v b v a 4 V
v= v + 2
a dv dv
dt →0.2 + 1.2 +=v 4
4 − v− dv 2
a=20 × 10 6 a dt dt
10× 10 3 dt
2
dv+ dv + =
0.2 1.2v 0 2 st →2 + +=
dt2 dt →(0.2s ++ 1.2 s 1) Ae = 0 0.2s 1.2 s 1 0
v= Ae st
→ =− =− → =−t + − 5 t
s11; s 2 5 vn Ae1 Ae 2
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 43
Second-Order Op Amp Circuits (2)
Ex.
10k Ω a
t = 0 + 10k Ω
Find v(t)? = + b
v vf v n –
+
dv (0) +
v(0)= 0; = 0 – 4V 20 µF v
dt
100 µF –
=
v f 4
=−t + − 5 t
vn Ae1 Ae 2
= +−t + − 5 t
v4 Ae1 Ae 2
=+ + =
v(0) 4 A1 A 2 0
A = − 5 −t − 5 t
→ 1 →=−v4 5 e + e V
dv (0) A = 1
=−A −5 A = 0 2
dt 1 2
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 44
Second-Order Op Amp Circuits (3)
Ex.
v=4 − 5 e−t + e − 5 t V
4
3.5
3
2.5
2
Voltage (V) Voltage 1.5
1
0.5
0
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)
Second-Order Circuits - sites.google.com/site/ncpdhbkhn 45
Các file đính kèm theo tài liệu này:
- bai_giang_electric_circuit_theory_chapter_viii_second_order.pdf