Bài giảng Electric circuit theory - Chapter III: Electrical Circuit Analysis - Nguyễn Công Phương
Electrical Circuit Analysis 1. Branch current method 2. Node voltage method 3. Mesh current metho
Bạn đang xem trước 20 trang tài liệu Bài giảng Electric circuit theory - Chapter III: Electrical Circuit Analysis - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Electric Circuit Theory
Electrical Circuit Analysis
Nguyễn Công Phương
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 2
Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoidal Steady State Analysis
X. AC Power Analysis
XI. Three-phase Circuits
XII. Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV. Two-port Networks
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 3
Electrical Circuit Analysis
1. Branch current method
2. Node voltage method
3. Mesh current method
Branch current method (1)
R1
R2
R3
R4E1
E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v2
–
a b
c
+
v4
–
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
A B
Loop A: – E1 + R1i1 – R2i2 + E2 = 0
Loop B: – E2 + R2i2 + R3i3 + R4i4 = 0
i1 + i2 – i3 = 0
i3 – i4 = –J
R1i1 – R2i2 = E1 – E2
R2i2 + R3i3 + R4i4 = E2
i1
i2
i3
i4
Ex. 1
4Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Branch current method (2)
A B
i1 + i2 – i3 = 0
i3 – i4 = –J
R1i1 – R2i2 = E1 – E2
R2i2 + R3i3 + R4i4 = E2
nKCL = n – 1
nKVL = b – n + 1
Ex. 1 R1
R2
R3
R4E1
E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v2
–
a b
c
+
v4
–
5Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Branch current method (3)
A B
i1 + i2 – i3 = 0
i3 – i4 = –J
R1i1 – R2i2 = E1 – E2
R2i2 + R3i3 + R4i4 = E2
1. Find:
nKCL = n – 1, and
nKVL = b – n + 1
2. Apply KCL at nKCL nodes
3. Apply KVL at nKVL loops
4. Solve simultaneous equations
Ex. 1 R1
R2
R3
R4E1
E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v2
–
a b
c
+
v4
–
6Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Branch current method (4)
1. Find:
nKCL = n – 1, and
nKVL = b – n + 1
2. Apply KCL at nKCL nodes
3. Apply KVL at nKVL nodes
4. Solve simultaneous equations
nKCL = 4 – 1 = 3; nKVL = 6 – 4 + 1 = 3
A: R1i1 + R5i5 + R2i2 – E1 = 0
B: R3i3 + R5i5 – R4i4 = 0
C: R2i2 + R6i6 + R4i4 – E6 = 0
a: – i1 + i2 – i6 = 0
b: i1 – i5 + i3 + J = 0
c: – i3 – i4 + i6 – J = 0
A B
C
Ex. 2
+–
+
–
R1 R3
R2 R4
R5
R6
E1
E6
i1
i2
i3
J
i4i5
+ +
+ +
+
– –
– –
–
a
b
c
d
7Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
i6
+
–
Branch current method (5)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 8
A
B
C2 3 6: 0b i i i+ + =
4 3 5: 0c i i i− + =
i1
i5
i2
i6
i3i41 4: 0d i i J− − − =
1 1 5 5 4 4 1:A R i R i R i E+ − =
3 3 6 6 5 5 3 6:B R i R i R i E E− + = −
6 6 2 2 6:C R i R i E− =
R1 R2
R3R4
R5
R6
E6
E3
E1 J
d
a
bc
+
–
+
–
Ex. 3
Branch current method (6)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 9
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
Ex. 4
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A. Find currents?
1 2 3 0i i i J+ − + =
1 1 2 2 1R i R i E− =
2 2 3 3 3R i R i E+ =
1 2 3
1 2
2 3
2
10 20 30
20 15 45
i i i
i i
i i
+ − = −
→ − =
+ =
1 2 3
1 2 3; ;i i i
∆ ∆ ∆
= = =
∆ ∆ ∆
1 1 1
10 20 0 ;
0 20 15
−
∆ = − 1
2 1 1
30 20 0 ;
45 20 15
− −
∆ = − 2
1 2 1
10 30 0 ;
0 45 15
− −
∆ = 3
1 1 2
10 20 30
0 20 45
−
∆ = −
Branch current method (7)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 10
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A. Find currents?
1 2 3 0i i i J+ − + =
1 1 2 2 1R i R i E− =
2 2 3 3 3R i R i E+ =
1 2 3
1 2
2 3
2
10 20 30
20 15 45
i i i
i i
i i
+ − = −
→ − =
+ =
1 1 1
10 20 0
0 20 15
−
∆ = −
20 0 1 1 1 1
1 10 0
20 15 20 15 20 0
− − −
= − +
−
1( 20 15 20 0) 10[1 15 20( 1)] 0[1 0 ( 20)( 1)]= − × − × − × − − + × − − − 650= −
Ex. 4
Branch current method (8)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 11
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A. Find currents?
1 2 3 0i i i J+ − + =
1 1 2 2 1R i R i E− =
2 2 3 3 3R i R i E+ =
1 2 3
1 2
2 3
2
10 20 30
20 15 45
i i i
i i
i i
+ − = −
→ − =
+ =
1 2 3
1 2 3; ;i i i
∆ ∆ ∆
= = =
∆ ∆ ∆
1 2 3650; 1350; 300; 2350∆ = − ∆ = − ∆ = ∆ = −
1
2
3
1350 2.08 A
650
300 0.46 A
650
2350 3.62 A
650
i
i
i
−
= =
−
→ = = −
−
−
= =
−
Ex. 4
12
Electrical Circuit Analysis
1. Branch current method
2. Node voltage method
3. Mesh current method
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (1)
1 1 1 0acE R i v− + + =
Ex. 1
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
R1
E1
+
–
i1
+ –v1
vac
a
c
1 1 1 ( ) 0a cE R i v v→ − + + − =
0
c
v =
1
1
1
aE vi
R
−
→ =
13Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (2)
2 2 2 0acE R i v− + + =
Ex. 1
R2
E2
+
–
i2
+ –v2
vac
a
c
2 2 2 ( ) 0a cE R i v v→ − + + − =
0
c
v =
2
2
2
aE vi
R
−
→ =
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
14Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (3)
Ex. 1
R3i3
+ –v3
a b
3
3
3
vi
R
= 3
3
a bv vi
R
−
→ =
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
15Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (4)
Ex. 1
4
4
4 4
b cv vvi
R R
−
= =
4
4
bvi
R
→ = R4
i4
+
–
v4
c
b
0cv =
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
16Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (5)
Ex. 1
4
4
bvi
R
=
3
3
a bv vi
R
−
=
1
1
1
aE vi
R
−
=
2
2
2
aE vi
R
−
=
Node a: i1 + i2 – i3 = 0
Node b: i3 – i4 + J = 0
1 2
1 2 3
3 4
0
0
a a a b
a b b
E v E v v v
R R R
v v v J
R R
− − −
+ − =
−
− + =
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
17Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (6)
Ex. 1
1 2
1 2 3 3 1 2
3 3 4
1 1 1 1
1 1 1
a b
a b
E E
v v
R R R R R R
v v J
R R R
+ + − = +
→
− + + =
1 2
1 2 3
3 4
0
0
a a a b
a b b
E v E v v v
R R R
v v v J
R R
− − −
+ − =
−
− + =
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
a
b
v
v
→
1 2
1 2 3 4
1 2 3 4
; ; ;a a a b b
E v E v v v vi i i i
R R R R
− − −
= = = =
1
2
3
4
i
i
i
i
→
18Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Node voltage method (7)
1. the reference node
2. the sum of the reciprocals
of all resistances connected
to each node
3. the negative sum of the
reciprocals of the
resistances of all branches
joining each pair of nodes
4. current source(s) for each
node
5. node voltage equations
6. node voltages
7. branch currents
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Ex. 1
1 2
1 2 3 3 1 2
3 3 4
1 1 1 1
1 1 1
a b
a b
E E
v v
R R R R R R
v v J
R R R
+ + − = +
− + + =
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–
19
Node voltage method (8)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Ex. 1 R1
R2
R3
R4
E1 E2
J
+
–
+
–
a
b
c
20
3 4 4
1 2
4 1 2 4 1 2
1 1 1
:
1 1 1 1
:
b c
b c
b v v J
R R R
E E
c v v J
R R R R R R
+ − =
− + + + = − − −
Node voltage method (9)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn
Ex. 1 R1
R2
R3
R4
E1 E2
J
+
–
+
–
a b
c
21
1 2
1 2 3 2 1 2
1 2
2 1 2 4 1 2
1 1 1 1
:
1 1 1 1
:
a c
a c
E E
a v v
R R R R R R
E E
c v v J
R R R R R R
+ + − = +
− + + + = − − −
Node voltage method (10)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 22
+–
+
–
R1 R3
R2 R4
R5
R6
E1
E6
J
a
b
c
d
Ex. 2d is the ground reference
1 6
1 2 6 1 6 1 6
1
1 1 3 5 3 1
6
6 3 3 4 6 6
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
a b c
a b c
a b c
E E
v v v
R R R R R R R
E
v v v J
R R R R R R
E
v v v J
R R R R R R
+ + − − = − −
− + + + − = +
− − + + + = − +
a
b
c
v
v
v
→
1 6
1 2 3 4 5 6
1 2 3 4 5 6
( ) ( )
; ; ; ; ;b a a c b c b c a
E v v v v v v v E v vi i i i i i
R R R R R R
− − − − −
→ = = − = = = =
i1
i2
i3
i4i5
+ +
+ +
+
– –
– –
–
+
–
Node voltage method (11)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 23
+–
+
–
R1 R3
R2 R4
R5
R6
E1
E6
J
a
b
c
d
Ex. 2c is the ground reference
1 6
1 2 6 1 2 1 6
1
1 1 3 5 5 1
2 5 2 4 5
1 1 1 1 1
:
1 1 1 1 1
:
1 1 1 1 1
: 0
a b d
a b d
a b d
E E
a v v v
R R R R R R R
Eb v v v J
R R R R R R
d v v v
R R R R R
+ + − − = − −
− + + + − = +
− − + + + =
Node voltage method (12)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 24
R1 R2
R3R4
R5
R6
E6
E3
E1 J
d
a
bc
+
–
+
–
Ex. 3
( )
( )
3 6
2 3 6 3 3 6
3
3 3 4 5 4 3
1
4 1 4 1
1 1 1 1
: 0
1 1 1 1 1
:
1 1 1
: 0
b c d
b c d
b c d
E Eb v v v
R R R R R R
E
c v v v
R R R R R R
Ed v v v J
R R R R
+ + − − = +
− + + + − = −
− − + + = − −
Node voltage method (13)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 25
R1 R2
R3R4
R5
R6
E6
E3
E1 J
d
a
bc
+
–
+
–
Ex. 3
( )
( )
61
1 2 5 6 2 6 1 1 6
3 6
2 6 2 3 6 3 6
1
1 1 4 1
1 1 1 1 1 1 1
:
1 1 1 1 1
: 0
1 1 1
: 0
a b d
a b d
a b d
EE
a J
R R R R R R R R R
E Eb
R R R R R R R
Ed J
R R R R
ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ
+ + + − + − = − +
− + + + + − = +
− − + + = − −
Node voltage method (14)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 26
+–
+
–
E1
E2
R1
R2
R3
R4
a
b
d
c
2 1b dv v E E− = −
3 4
0b dv v J
R R
+ − =
0
c
v =
b
d
v
v
→
( )1 2a d bv v E v E→ = − = −
1 2 3 4
1 2 3 4
; ; ;a d a b b d
v v v v v vi i i i
R R R R
− −
→ = = = =
Ex. 4
Node voltage method (15)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 27
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
Ex. 5
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A. Find currents?
1 1 1 30 452
10 20 15 10 15a
v
+ + = + −
9.23 Vav→ =
1
2
3
30 9.23 2.08 A
10
9.23 0.46 A
20
45 9.23 3.62 A
15
i
i
i
−
= =
−
→ = = −
+
= =
a
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 28
Electrical Circuit Analysis
1. Branch current method
2. Node voltage method
3. Mesh current method
Mesh current method (1)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 29
5A 3A
2A
Branch currents
+
–
5A 3A
Mesh currents
+
–
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 30
Mesh current method (2)
6A –3A
5A2A
8A
?6A ?–3A
?–8A
?5A?–2A
?6 – (–3) = 9A
?–3 – 8 = –11A
?–6 – 2 = –8A
?
?
?
Mesh current method (3)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 31
R1
R2
R3
R4
E1 E2
J
+
–
+
–
i1
i2
i3
i4+ –v1 + –v3
+
v1
–
a b
c
+
v4
–A: R1i1 – R2i2 = E1 – E2
B: R2i2 + R3i3 + R4i4 = E2
iA iB J
i1 = iA
i2 = iB – iA
i3 = iB
i4 = iB + J
R1iA – R2(iB – iA) = E1 – E2
R2(iB – iA) + R3iB + R4(iB + J) = E2
(R1+ R2)iA – R2iB = E1 – E2
– R2 iA + (R2 + R3 + R4)iB = E2 – R4J
A
B
i
i
→
Ex. 1
Mesh current method (4)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 32
R1
R2
R3
R4
E1 E2
J
+
–
+
–
a b
c
iA iB J
R1iA + R2(iA – iB) = E1 – E2
R2(iB – iA) + R3iB + R4(iB + J) = E2
Ex. 1
R1(iA )
R2(iB – iA)
+ R2(iA – iB) = E1 – E2
+ R3(iB ) + R4(iB + J) = E2
Mesh current method (5)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 33
R1
R2
R3
R4
E1 E2
J
+
–
+
–
a b
c
iA iB
J
Ex. 1
1( )AR i 2 ( )A BR i i J+ − + 1 2E E= −
2 ( )B AR i i J− − 3( )BR i j+ − 4 ( )BR i+ 2E=
i1
i2
i3
i4
A
B
i
i
→
1 ;Ai i→ = 2 ;B Ai i i J= − − 3 ;Bi i J= − 4 Bi i=
Mesh current method (6)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 34
R1
R2
R3
R4
E1 E2
J
+
–
+
–
a b
c
iA iB
J
Ex. 1
1( )AR i J− 2 ( )A BR i i+ − 1 2E E= −
2 ( )B AR i i− 3( )BR i J+ − 4 ( )BR i+ 2E=
i1
i2
i3
i4
A
B
i
i
→
1 ;Ai i J→ = − 2 ;B Ai i i= − 3 ;Bi i J= − 4 Bi i=
Mesh current method (7)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 35
R1
R2
R3
R4
E1 E2
J
+
–
+
–
a b
c
iA iB
J
Ex. 1
1( )AR i J− 3( )A BR i i J+ + − 4 ( )A BR i i+ +
2 ( )BR i 3( )B AR i i J+ + − 4 ( )B AR i i+ + 2E=
1E=
i1
i2
i3
i4
A
B
i
i
→
1 ;Ai i J→ = − 2 ;Bi i= 3 ;A Bi i i J= + − 4 A Bi i i= +
Mesh current method (8)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 36
iA iB
iC
J
A: R1(iA )
B: R3(iB + J )
C: R2(iC – iA)
+ R5(iA – iB) + R2(iA – iC) = E1
+ R4(iB – iC) + R5(iB – iA) = 0
+ R4(iC – iB) + R6(iC ) = –E6
iA
iC
iB
+–
+
–
R1 R3
R2 R4
R5
R6
E1
E6
J
+ +
+ +
+
– –
– –
–
a
b
c
d
i1
i2
i3
i4i5
i6
i1 = iA; i2 = iA – iC; i6 = – iCi3 = – iB – J; i4 = iB – iC; i5 = iA – iB;
Ex. 2
Mesh current method (9)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 37
iA iB
iC
J
+–
+
–
R1 R3
R2
R4
R5
R6
E1
E6
J
+ +
+ +
+
– –
– –
–
a
b
c
d
Ex. 2
1( )AR i 3( )A BR i i+ + 6 ( )A CR i i+ + 1 6E E= −
3( )B AR i i+ 4 ( )B CR i i J+ − − 5( )BR i J+ − 0=
2 ( )CR i 4 ( )C BR i i J+ − + 6 ( )C AR i i+ + 6E= −
Mesh current method (10)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 38
R1 R2
R3R4
R5
R6
E6
E3
E1 J
d
a
bc
+
–
+
–
Ex. 3
A
B
CJ
1 5 4 1
3 6 5 3 6
2 6 6
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
A A B A
B B C B A
C C B
R i J R i i R i E
R i R i i R i i E E
R i R i i E
− + + + =
+ − + + = −
+ − =
A
B
C
i
i
i
→
i1
i5
i2
i6
i3i4
1 ;Ai i J= − 2 ;Ci i= − 3 ;Bi i= 4 ;Ai i= − 5 ;A Bi i i= + 6 C Bi i i= −
Mesh current method (11)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 39
R1 R2
R3R4
R5
R6
E6
E3
E1 J
d
a
bc
+
–
+
–
Ex. 3
A
B
C
J
1 5 4 1
3 6 5 3 6
2 6 6
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
A A B A
B B C B A
C C B
R i R i i J R i J E
R i R i i R i i J E E
R i R i i E
+ + − + − =
+ − + + − = −
+ − =
Mesh current method (12)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 40
+
–
+
–E1 E2
R1 R2
J
iA iB
1 2 1 2A BR i R i E E+ = +
A Bi i J− = −
Ex. 4
Mesh current method (13)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 41
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
Ex. 5
R1 = 10Ω, R2 = 20Ω, R3 = 15Ω, E1 = 30V,
E3 = 45V, J = 2A. Find currents?
iA iB
J
10 20( 2) 30
20( 2) 15 45
A A B
B A B
i i i
i i i
+ − + =
− − + =
30 20 10
20 35 85
A B
A B
i i
i i
− = −
→
− + =
2.08 A
3.62 A
A
B
i
i
=
→
=
1
2
3
2.08 A
2 0.46 A
3.62 A
A
A B
B
i i
i i i
i i
= =
→ = − + − = −
= =
Mesh current method (14)
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 42
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
Ex. 5
iA iB
J
10 20( 2) 30
20( 2) 15 45
A A B
B A B
i i i
i i i
+ − + =
− − + =
2.08 A
3.62 A
A
B
i
i
=
→
=
1
2
3
2.08 A
2 0.46 A
3.62 A
A
A B
B
i i
i i i
i i
= =
→ = − + − = −
= =
+
–
+–
R1
E1
R2 J R3
E3
i1
i2
i3
iA iB
J
10( ) 20( 2) 30
10( ) 15 30 45
A B A
B A B
i i i
i i i
+ + + =
+ + = +
1.54 A
3.62 A
A
B
i
i
= −
→
=
1
2
3
2.08 A
2 0.46 A
3.62 A
A
A B
B
i i
i i i
i i
= =
→ = − + − = −
= =
Electrical Circuit Analysis - sites.google.com/site/ncpdhbkhn 43
Electrical Circuit Analysis
1. Branch current method
2. Node voltage method
3. Mesh current method
Các file đính kèm theo tài liệu này:
- bai_giang_electric_circuit_theory_chapter_iii_electrical_cir.pdf