Bài giảng Electric circuit theor - Chapter V: Active circuits - Nguyễn Công Phương
Mesh Current Method (2 Ex. 1 1 = 7 V; E2 = 4 V; E3 = 2 V;R 1 = R2 = R3 = 2 kΩ; R4 = 6 kΩ;R 5 = 3 kΩ; solve the circuit?
Bạn đang xem trước 20 trang tài liệu Bài giảng Electric circuit theor - Chapter V: Active circuits - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguy ễn Công Ph ươ ng
Electric Circuit Theory
Active Circuits
Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoidal Steady State Analysis
X. AC Power Analysis
XI. Three-phase Circuits
XII. Magnetically Coupled Circuits
XIII.Frequency Response
XIV.The Laplace Transform
XV. Two-port Networks
Active Circuits - sites.google.com/site/ncpdhbkhn 2
Active Circuits
1. Dependent Sources
2. Analysis of Circuits with Dependent Sources
3. The Operational Amplifier: Basic Concepts and
Subcircuits
4. Analysis of Circuits with Op Amps
Active Circuits - sites.google.com/site/ncpdhbkhn 3
Dependent Voltage Source
i vc
+ –
+v –
Voltage-controlled voltage source (VCVS): vc = µv x
Current-controlled voltage source (CCVS): vc = rmix
Active Circuits - sites.google.com/site/ncpdhbkhn 4
Dependent Current Source
i ic
+v –
Voltage-controlled current source (VCCS): ic = gmvx
Current-controlled current source (CCCS): ic = βix
Active Circuits - sites.google.com/site/ncpdhbkhn 5
Active Circuits
1. Dependent Sources
2. Analysis of Circuits with Dependent Sources
a. Branch Current Method
b. Node Voltage Method
c. Mesh Current Method
d. Equivalent Subcircuits
3. The Operational Amplifier: Basic Concepts and
Subcircuits
4. Analysis of Circuits with Op Amps
Active Circuits - sites.google.com/site/ncpdhbkhn 6
Branch Current Method (1)
a
Ex. 1
– 4Ω
i
+− + = 4A v 0.5 vx
ix i i c 4 0 x
+ ix
4i− 6 i = 12 +
x – 6Ω
ic
= =×= 12V b
ic0.5 v x 0.5 4 ii xx 2
i+− i2 i + 4 = 0 −i + i =− 4 i = 6A
→ x x → x → x
− = − = =
4ix 6 i 12 4ix 6 i 12 i 2 A
Active Circuits - sites.google.com/site/ncpdhbkhn 7
Branch Current Method (2)
Ex. 2 R2 E
+ –
bi:− i − i = 0
c 2 3 i2
+ − = βi1
ci:1 i 3 J 0 a b
ARi:− Ri + Ri −= E 0
11 33 22 ic
R1 i1 i R3
i= β i 3
c 1 J c
βi− i − i = 0
1 2 3
→ + − =
i1 i 3 J 0
− + −=
Ri11 Ri 33 Ri 22 E 0
Active Circuits - sites.google.com/site/ncpdhbkhn 8
Node Voltage Method (1)
a
Ex. 1
– 4Ω
11 12 i
+ =+ − 4A v 0.5 vx
va4 i c x
4 6 4 + ix
+
= = − – 6Ω i
ic0.5 v x 0.5(12 v a ) c
12V b
11 12
→+ v =+−4 0.5(12 − v )
4 6 a 4 a
12−v 12 − (12) −
i =a = = 6A
x 4 4
→v = − 12V →
a v −12
i =−a =− = 2 A
6 6
Active Circuits - sites.google.com/site/ncpdhbkhn 9
Node Voltage Method (2)
Ex. 2 R2 E
1+ 1 − 1 =−+ E
va vJi b c + –
RR12 R 2 R 2
−1 + 1 + 1 =− E βi1
va v b i c a b
R2 RR 23 R 2
ic
R1 i1 R3
=β = β va
ic i 1
R1 J c
111++β −=+ 1 E
va v b J
RRR R R
→ 121 2 2
−+1β 1 ++ 11 =− E
va v b
RR21 RR 23 R 2
Active Circuits - sites.google.com/site/ncpdhbkhn 10
Mesh Current Method (1)
a
Ex. 1
– 4Ω
i
−+ − = 4A v 0.5 vx
4(im 4) 6( i m i c ) 12 x im
+ ix
+
= =×= – 6Ω i
ic0.5 v x 0.5 4 ii xx 2 c
= − 12V b
2(im 4)
→ −+[ − −=]
4(im 4) 6 i m 2( i m 4) 12
i= i −=4 10 −= 4 6A
→i = 10 → x m
m =−+=− + − =
i im i c 10 2(10 4) 2A
Active Circuits - sites.google.com/site/ncpdhbkhn 11
Mesh Current Method (2)
Ex. 2 R2 E
+ + += + –
Ri1A Ri 2 D Ri 3 B E 0
iD
− = βi1
iB i A J a b
i− i = i ic
B D c R i R
1 1 iA 3
= β iB
ic i 1 J c
→ ++ =−− + + β
(RRRi123 )A ERRJRi () 23 21
= −
iA i 1
→+++β =+ +
(RRR123 RiE 21 )() RRJ 23
Active Circuits - sites.google.com/site/ncpdhbkhn 12
1. Temporarily treat the dependent R2 E
source(s) as independent + –
source(s). i2
βi1
2. Perform branch current (or nodal a b
or mesh) analysis as usual to i
R i c R
determine the branch current (or 1 1 i3 3
nodal or mesh) equations. J c
3. Express the value of dependent
source(s) in terms of the branch
currents (or node voltages or
mesh currents).
4. Solve the equations.
Active Circuits - sites.google.com/site/ncpdhbkhn 13
Active Circuits
Ex. 3
a
+ –
+ rmix
E –
J
vy
b c + – d
R1
R4
R2 ix R3
gmvy
e
Active Circuits - sites.google.com/site/ncpdhbkhn 14
Active Circuits
1. Dependent Sources
2. Analysis of Circuits with Dependent Sources
a. Branch Current Method
b. Node Voltage Method
c. Mesh Current Method
d. Equivalent Subcircuits
3. The Operational Amplifier: Basic Concepts and
Subcircuits
4. Analysis of Circuits with Op Amps
Active Circuits - sites.google.com/site/ncpdhbkhn 15
Equivalent Circuits (1)
Ex. 1 a a
Find i? – 4Ω – 4Ω
+ i
4A vx 0.5 vx 4A vx 0.5 vx
+ ix + ix
+ voc +
–
– 6Ω
– ic ic
12V b 12V b
v
E= v R = open-circuit
eq open-circuit eq b
ishort-circuit
1 12
= + − R
v4 i + eq
4a 4 c
– Eeq i 6Ω
i=0.5 v = 0.5(12 − v )
c x a c
1 12
→v =+−4 0.5(12 − v ) →v = − 4V
4a 4 a oc
Active Circuits - sites.google.com/site/ncpdhbkhn 16
Equivalent Circuits (2)
Ex. 1 a a
Find i? – 4Ω – 4Ω
i
4A vx 0.5 vx 4A vx 0.5 vx
+ ix + ix
+ isc +
–
– 6Ω
ic ic
12V b 12V b
v
E= v R = open-circuit
eq open-circuit eq b
ishort-circuit
4+−iii −=→ 0 iii =−+ 4 R
x scc sc x c + eq
– E 6Ω
= eq i
ic0.5 v x → =
ic 6
v = 12 V c
v= v → x
a b = = →i =−+3 6 4 = 1A
ix 12 / 4 3A sc
Active Circuits - sites.google.com/site/ncpdhbkhn 17
Equivalent Circuits (3)
Ex. 1 a
Find i? – 4Ω
i
4A v 0.5 vx
= = − x
Eeq v open-circuit 4 V + ix
+
– 6Ω
ic
=
isc 1A 12V b
v −4
R =open-circuit = = −4 Ω b
eq i 1
short-circuit R
+ eq
– E i 6Ω
−E −( − 4) eq
i =eq = = 2 A
+ − + c
Req 6 4 6
Active Circuits - sites.google.com/site/ncpdhbkhn 18
Equivalent Circuits (4)
Ex. 2
R2 E
E = 16 V; J = 2 A; R1 = 4 Ω; R2 = 6 Ω; + –
β = 2; find R ?
eq i2
v βi1
= open-circuit a b
Req +
ishort-circuit ic
R1 i1 v
− −+ + = oc
(vc v b ) ERi22 Ri 11 0 J –
= − c
voc v b v c
→ = + −
voc R11 i R 22 i E
= →= +β −
i1 J voc R1 J R 2 J E
= =β = β =×+××− =
ii2c i 1 J 4 2 6 2 2 16 16V
Active Circuits - sites.google.com/site/ncpdhbkhn 19
Equivalent Circuits (5)
Ex. 2
R2 E
E = 16 V; J = 2 A; R1 = 4 Ω; R2 = 6 Ω; + –
β = 2; find Req ?
v βi1
= open-circuit a b
Req
i i
short-circuit R i c
−+ =→ =− 1 1 isc
iJi1sc0 i sc Ji 1
J
1+ 1 =−+ E c
va J i c
R1 R 2 R 2 a
v
i=β i = β a βi R
c 1 1 ic 2
R1 R i
1 1 +
va 5.09
→ = →=i = = 1.27 A –
va 5.09V 1 J E
R1 4
→ =− =
isc 2 1.27 0.73A
Active Circuits - sites.google.com/site/ncpdhbkhn 20
Equivalent Circuits (6)
Ex. 2
R2 E
E = 16 V; J = 2 A; R1 = 4 Ω; R2 = 6 Ω; + –
β = 2; find Req ?
v βi1
= open-circuit a b
Req
ishort-circuit ic
R1 i1
v = 16 V J
oc c
=
isc 0.73A
16
→R = =22 Ω
eq 0.73
Active Circuits - sites.google.com/site/ncpdhbkhn 21
Equivalent Circuits (7)
Ex. 3
a
+ –
+ rmix
E –
J
vy
b c + – d
R1
R3
R2 ix
gmvy
e
Active Circuits - sites.google.com/site/ncpdhbkhn 22
Active Circuits
1. Dependent Sources
2. Analysis of Circuits with Dependent Sources
3. The Operational Amplifier: Basic Concepts and
Subcircuits
4. Analysis of Circuits with Op Amps
Active Circuits - sites.google.com/site/ncpdhbkhn 23
The Operational Amplifier (1)
+
Input– Output
vo
v+
+ µ(v – v )
– + –
µ = ∞
v–
Active Circuits - sites.google.com/site/ncpdhbkhn 24
The Operational Amplifier (2)
J R
= +
vo v− RJ – vo
+
=µ −= µ −
vo ( vv+ − )( Ev − ) io
+
µE− RJ –
→v− = E
1+ µ
µ(E+ RJ )
→v =
o + µ J R
1 v v
µ = ∞ – o
v+
+ io
= = +
v− v + E –
→ –
= + µ(v+ – v–)
vo E RJ E
Active Circuits - sites.google.com/site/ncpdhbkhn 25
The Operational Amplifier (3)
i+
v+ +
vo
v– – io
i–
i+= i − = 0
v+= v −
= ∞
Ri
=
Ro 0
Active Circuits - sites.google.com/site/ncpdhbkhn 26
The Operational Amplifier (4)
R R
= 1 2
vi R1 i i R vi
→ = − 2
vo v i
ii
= − R1 –
vo R2 i i + vo
io
v + io
i –
v
R R i o
v= 1 v →v =1 + 2 v i
i+ o o i
R1 R 2 R1
R1 R2
Active Circuits - sites.google.com/site/ncpdhbkhn 27
The Operational Amplifier (5)
v +
i –
= vo
vo v i
v v
v1 1+ 2
R R
R1 1 2
v1
v v R R
=1 + 2 1 R o
vo R o 2
v2 –
R1 R 2 + vo
v2
R2
Active Circuits - sites.google.com/site/ncpdhbkhn 28
The Operational Amplifier (6)
R1 R2
v1
v
R3 – –
+ vo
v2
v+
R4
v− v v− v
1 − = − o
R1 R 2
R2 R 4 R 2
v− v+ v + →=+v1 v −=− vkvkv
2 = o + 2 1 22 11
R1 RR 34 R 1
R3 R 4
v+= v −
Active Circuits - sites.google.com/site/ncpdhbkhn 29
Active Circuits
1. Dependent Sources
2. Analysis of Circuits with Dependent Sources
3. The Operational Amplifier: Basic Concepts and
Subcircuits
4. Analysis of Circuits with Op Amps
1. Branch Current Method
2. Node Voltage Method
3. Mesh Current Method
Active Circuits - sites.google.com/site/ncpdhbkhn 30
Analysis of Circuits with Op Amps
i+
v+ +
i+= i − = 0
vo
v– – =
io v+ v −
i–
io
v+ + v+
+ µ(v – v ) g (v – v )
– + – vo m + –
v µ → ∞ v gm → ∞
– – –
ix ix io
+
+ r i βi
– m x vo x
rm → ∞ β → ∞
–
Active Circuits - sites.google.com/site/ncpdhbkhn 31
Branch Current Method (1)
Ex. 1
– +
E1 = 7 V; E2 = 4 V; E3 = 2 V; R
1 E3 R3
R2 +
R = R = R = 2 k Ω; R = 6 k Ω; E1 vo
1 2 3 4 +
–
+
R5 = 3 k Ω; solve the circuit? –
– R5
E2
R4
– +
R
1 E3 R3
R2 +
E1
+
vx –
+
– v+ +
– R5 + µ(v – v )
– + – v
vo o
E2 + µ → ∞
µv – v–
R4 x –
Active Circuits - sites.google.com/site/ncpdhbkhn 32
Branch Current Method (2)
Ex. 1 i1 i3
E1 = 7 V; E2 = 4 V; E3 = 2 V; – +
R
R1 = R2 = R3 = 2 k Ω; R4 = 6 k Ω; 1 E3 R3
R2 +
E1
R5 = 3 k Ω; solve the circuit? +
vx –
+
– i2
– R5
vo
+ − = E +
i1 i 2 i 3 0 2
i µv –
R4 4 x
− = −
R11 i R 22 i E 1 E 2
µ +12
R i+ v + R i = E → =
22x 44 2 i1 → =
2µ + 6 i1 0.5mA
+ − =
R33 i R 54 i vx E 3 µ → ∞
+ = µ
(R4 Ri 5 ) 4 v x
Active Circuits - sites.google.com/site/ncpdhbkhn 33
Node Voltage Method (1)
Ex. 1
– +
E1 = 7 V; E2 = 4 V; E3 = 2 V; R
1 E3 R3
R2 +
R = R = R = 2 k Ω; R = 6 k Ω; E1 vo
1 2 3 4 +
–
+
R5 = 3 k Ω; solve the circuit? –
– R5
E2
R4
– +
R
1 E3 R3
R2 +
E1
+
vx –
+
– v+ +
– R5 + µ(v – v )
– + – v
vo o
E2 + µ → ∞
µv – v–
R4 x –
Active Circuits - sites.google.com/site/ncpdhbkhn 34
Node Voltage Method (2)
Ex. 1 i1 i3
v1
E1 = 7 V; E2 = 4 V; E3 = 2 V; – +
R
R1 = R2 = R3 = 2 k Ω; R4 = 6 k Ω; 1 E3 R3
R2 +
E1
R5 = 3 k Ω; solve the circuit? +
vx –
+
– i2
i5
+ − = –
i1 i 2 i 3 0 R5
v2 vo
+ = E2 +
i i 0 –
4 5 R i4 µv x
− − 4
= E1 v 1 = E2 v 1
i1 ; i2
R1 R2 E− v E − v E− v + v
− + 1 1+ 2 1 −3o 1 = 0
E3 vo v 1
i = R1 R 2 R 3
3
R3 −
− v2 v2 v o
v2 v2 v o + = 0
i = ; i =
4 5 R4 R 5
R4 R5
Active Circuits - sites.google.com/site/ncpdhbkhn 35
Node Voltage Method (3)
Ex. 1 i1 i3
v1
E1 = 7 V; E2 = 4 V; E3 = 2 V; – +
R
R1 = R2 = R3 = 2 k Ω; R4 = 6 k Ω; 1 E3 R3
R2 +
E1
R5 = 3 k Ω; solve the circuit? +
vx –
+
– i2
i5
– R
E− v E − v E− v + v v 5
1 1+ 2 1 −3o 1 = 0 2 vo
+
R R R E2
1 2 3 i µv –
R4 4 x
v v− v
2 +2 o = 0
R4 R 5
=µ = µ −
vo v x ( vv1 2 )
2µ + 3
→ = 7− 6
v1 3 → = → = =
µ + 3 v1 6V i1 0.5mA
µ → ∞ 2
Active Circuits - sites.google.com/site/ncpdhbkhn 36
Mesh Current Method (1)
Ex. 1
– +
E1 = 7 V; E2 = 4 V; E3 = 2 V; R
1 E3 R3
R2 +
R = R = R = 2 k Ω; R = 6 k Ω; E1 vo
1 2 3 4 +
–
+
R5 = 3 k Ω; solve the circuit? –
– R5
E2
R4
– +
R
1 E3 R3
R2
E1 i
+ x
+
– ix io
– R5
vo
βix
E2
R4 β → ∞
ic = βix
Active Circuits - sites.google.com/site/ncpdhbkhn 37
Mesh Current Method (2)
Ex. 1 i1
E1 = 7 V; E2 = 4 V; E3 = 2 V; – +
R
R1 = R2 = R3 = 2 k Ω; R4 = 6 k Ω; 1 E3 R3
R2
E1 i
R = 3 k Ω; solve the circuit? +
5 x i
+
– D
i – i
A B R5
vo
E2
R4
+ −=− ic = βix
Ri12A Ri( A i B ) E 12 E
Ri(−+ i )( Ri −= i ) E 9β − 80
2BA 4 Bc 2 →i =
+ − = A 18β − 70 → =
Ri3D Ri 5( D i c ) E 3 iA 0.5mA
=β = β − β → ∞ → =
ic i x( ii BD ) i1 0.5mA
Active Circuits - sites.google.com/site/ncpdhbkhn 38
Các file đính kèm theo tài liệu này:
- bai_giang_electric_circuit_theor_chapter_v_active_circuits_n.pdf