Bài giảng Control system design - Chapter II: Mathematical Models of Systems - Nguyễn Công Phương
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
62 trang |
Chia sẻ: linhmy2pp | Ngày: 19/03/2022 | Lượt xem: 222 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Bài giảng Control system design - Chapter II: Mathematical Models of Systems - Nguyễn Công Phương, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Nguyễn Công Phương
CONTROL SYSTEM DESIGN
Mathematical Models of Systems
Contents
I. Introduction
II. Mathematical Models of Systems
III. State Variable Models
IV. Feedback Control System Characteristics
V. The Performance of Feedback Control Systems
VI. The Stability of Linear Feedback Systems
VII. The Root Locus Method
VIII.Frequency Response Methods
IX. Stability in the Frequency Domain
X. The Design of Feedback Control Systems
XI. The Design of State Variable Feedback Systems
XII. Robust Control Systems
XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn 2
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 3
Differential Equations of Physical
Systems (1)
i
v
• Current i: a through-variable
• Voltage v: an across-variable
sites.google.com/site/ncpdhbkhn 4
Differential Equations of Physical
Systems (2)
Variable Integrated Variable Integrated
through through- across across-
System element variable element variable
Current, Charge, Voltage, Flux linkage,
Electrical
i q v λ
Mechanical Translational
Force, Velocity, Displacement,
translational momentum,
F v y
P
Mechanical Angular Angular Angular
rotational Torque, T momentum, velocity, displacement,
h ω θ
Fluid Fluid
Pressure
volumetric rate Volume, Pressure,
momentum,
of flow, V P
γ
Q
Thermal Heat flow rate, Heat energy, Temperature,
q H T
sites.google.com/site/ncpdhbkhn 5
Differential Equations of Physical
Systems (3)
Inductive storage
Electrical inductance:
L
v: voltage di 1 2 i
v21 L E Li
i: current dt 2 v v
L: inductance 2 1
Translational spring:
v: translational velocity 1 dF 1 F 2 k F
F: force v21 E
k dt 2 k v v
k: translational stiffness 2 1
Rotational spring:
ω: angular velocity 1 dT 1 T 2 k F
T: torque 21 E
k dt 2 k 2 1
k: rotational stiffness
Fluid inertia: I
P: Pressure dQ 1 2 Q
PI21 E IQ
Q: fluid volumetric flow rate dt 2 P2 P1
I: fluid inertance
sites.google.com/site/ncpdhbkhn 6
Differential Equations of Physical
Systems (4)
Capacitive storage
Electrical capacitance: C
dv21 1 2 i
v: voltage; i: current i C E Cv21
C: capacitance dt 2 v2 v1
Translational mass: 2
dv 1 F F v1
v: translational velocity; F: force FM 2
E M const
M: mas; k: translational stiffness dt 2 k v2
Rotational mass:
d2 1 2 T 1
: angular velocity; T: torque TJ EJ
ω 2 J const
J: moment of inertia dt 2 2
Fluid capacitance:
dP 1 2 Q
P: Pressure; C : fluid capacitance QC 21 ECP C
f f dt 2 f 21 f
Q: fluid volumetric flow rate P2 P1
Thermal capacitance: q
dT T1
2 Ct
P: Pressure; q: heat flow rate; q Ct ECT t 2 const
dt T2
Ct: thermal capacitance
sites.google.com/site/ncpdhbkhn 7
Differential Equations of Physical
Systems (5)
Energy dissipators
Electrical resistance: R
v v2 i
v: voltage; i: current i 21 21
P v
R: resistance R R v2 1
Translational damper:
2 F b
v: translational velocity; F: force F bv21 P bv21
b: viscous friction v2 v1
Rotational damper:
T b
: angular velocity; T: torque T b P b2
ω 21 21
b: viscous friction 2 1
Fluid resistance: 2 R f
P21 P Q
P: Pressure; R : fluid resistance Q P 21
f R R
Q: fluid volumetric flow rate f f P2 P1
Thermal resistance:
T T Rt q
P: Pressure; q: heat flow rate; q 21 P 21
Rt Rt
Rt: thermal resistance T2 T1
sites.google.com/site/ncpdhbkhn 8
Differential Equations of Physical
Systems (6)
Ex. 1
R L C
Wall friction r() t
b k – +
Mass y
M i() t
Force di( t ) 1 t
r(t) Ri()()() t L i t dt r t
dt C 0
d2 y()() t dy t
M b ky()() t r t
dt2 dt
dv() t t
M bvt()()() kvtdtrt
dy() t dt 0
v() t
dt
sites.google.com/site/ncpdhbkhn 9
Differential Equations of Physical
Systems (7) v1() t iR1 v2 () t
Ex. 2
iL
iC1 iR2 R1
iC2
L1
k R2 C
C1 2
Friction b2 r() t
Velocity v (t)
M2 2
Friction b iCRR1 i 2 i 1 r() t
1
iRCL1 i 2 i 0
M1 Velocity v1(t)
dv1 v 1 v 1 v 2
C1 r() t
Force r(t) dt R R
2 1
t
v1 v 2 dv 2 1
C2 v 2 dt 0
dv1 0
M b v b v b v r() t R1 dt L
1dt 1 1 2 1 1 2
dv11 1 v 2
C1 v 1 v 1 r() t
dv t dt R2 R 1 R 1
M2 b v b v k v dt 0
2 1 2 1 1 2 t
dt 0 dv2 1 1 1
C2 v 2 v 1 v 2 dt 0
0
dt R1 R 1 L
sites.google.com/site/ncpdhbkhn 10
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical
Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 11
Linear Approximations of
Physical Systems (1) y
x() t y() t
System y mx
0 x
x() t y() t x() t y() t
1 System 1 System
x2 () t y2 () t
System kx() t ky() t
System
x()() t x t y()() t y t
1 2 System 1 2
Superposition Homogeneity
sites.google.com/site/ncpdhbkhn 12
Linear Approximations of
Physical Systems (2)
y y mx b
x() t y() t y1
System y
y0
x
0 x0 x1 x
y1 mx 1 b y 0 y m() x 0 x b
y0 mx 0 b
y m x
Linear !!!
sites.google.com/site/ncpdhbkhn 13
Linear Approximations of
Physical Systems (3) y y g() x
dg
x() t y() t
y0 dx
System x x0
y( t ) g [ x ( t )]
0 x0 x
dg()()x x d2 g x x 2
0 0
g( x0 ) 2 ...
dx x x 1! dx 2!
0 x x0
dg
g()() x x x
0dx 0
x x0
y0 m() x x 0 ()()y y0 m x x 0
y m x
sites.google.com/site/ncpdhbkhn 14
Linear Approximations of
Physical Systems (4)
x() t y() t
System
y g( x1 , x 2 ,..., xn )
g
g( x10 , x 20 ,..., xn 0 ) ( x 1 x 10 )
x1
x x0
g g
(x2 x 20 ) ... ( xn x n 0 )
x2 xn
x x0 x x0
sites.google.com/site/ncpdhbkhn 15
Linear Approximations of
Physical Systems (5)
Ex.
T mgLsin
sin
T mgL ()
0 0
0
00;T 0 0
T mgL(cos0o )( 0 o ) mgL
T
2
doku.php?id=phy141:labs:lab1
0
2
sites.google.com/site/ncpdhbkhn 16
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 17
The Laplace Transform (1)
The Laplace transformation of f(t): F()() s f t est dt
0
1 j
The inverse Laplace transform of F(s): f()() t F s est ds
2 j j
f(t) ()t u() t eat t teat sin at cosat
1 1 1 1 a s
F(s) 1 2 2 2 2 2 2
s s a s ()s a s a s a
sites.google.com/site/ncpdhbkhn 18
The Laplace Transform (2)
Property f(t) F(s)
1. Magnitude scaling Af() t AF() s
2. Addition/subtraction f1()() t f 2 t F1()() s F 2 s
1 s
3. Time scaling f() at F
a a
f( t a ) u ( t a ), a 0 eas F() s
4. Time shifting
f( t ) u ( t a ), a 0 eas L[ f ( t a )]
5. Frequency shifting eat f() t F() s a
6. Differentiation dn f()/ t dt n sn F( s ) s n1 f (0) s n 2 f 1 (0) ... s o f n 1 (0)
7. Multiplication by t tn f() t ( 1)nd n F ( s ) / ds n
8. Division by t f()/ t t F() d
s
t
9. Integration f() d F()/ s s
0
t
10. Convolution f1()*()()() t f 2 t f 1 f 2 t d F()() s F s
0 1 2
11. Final value limf ( t ) limsF ( s )
t s0
sites.google.com/site/ncpdhbkhn 19
The Laplace Transform (3)
d2 y()() t dy t
Ex. 1 M b ky()() t r t
dt2 dt
r()() t R s
y()() t Y s ky()() t kY s
dy() t
b b sY( s ) y (0 )
dt
d2 y() t dy
M M s2 Y( s ) sy (0 ) (0 )
dt2 dt
dy
M s2 Y() s sy (0) (0) b sY () s y (0) kY () s R () s
dt
dy
R() s M sy (0) (0) by (0)
dt p() s ?
Y() s y() t
Ms2 bs k q() s
sites.google.com/site/ncpdhbkhn 20
The Laplace Transform (4)
Ex. 1 4(s 3) 1.5
Y() s
(s 1)( s 2) 1
KK 0.5
1 2
s1 s 2 0
4(s 3) 4(s 3) ImaginaryPart -0.5
K1 8
(s 1) (s 2) (s 2) -1
s1 s1
-1.5
4(s 3) 4(s 3)
K 4 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
2 (s 1) ( s 2) (s 1) Real Part
s2 s2 4
3.5
8 4
Y() s 3
s1 s 2 2.5
2
at K
Ke 1.5
s a 1
0.5
y( t ) 8 et 4 e 2 t
0
0 1 2 3 4 5
sites.google.com/site/ncpdhbkhn 21
The Laplace Transform (5)
Ex. 2 15
10
4s 76 5
Y() s 2
s6 s 265 0
ImaginaryPart -5
KK1 2
-10
s3 j 16 s 3 j 16 -15
-30 -25 -20 -15 -10 -5 0 5 10
Real Part
4s 76
K 6
1 -3t o
5.66e cos(16t - 45 )
(s 3 j 16) (s 3 j 16) 5.66e-3t
s3 j 16 4
-5.66e-3t
o
2 j 2 2.83 45 2
0
y( t ) 2 2.83 e3t cos(16 t 45 o )
-2
-4
5.66e3t cos(16 t 45 o )
-6
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time
sites.google.com/site/ncpdhbkhn 22
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 23
The Transfer Function of Linear
Systems (1)
R() s Y() s
System
OutputY ( s )
G() s
InputR ( s )
dn y d n1 y d n 1 r d n 2 r
q ... q y p p ... p r
dtnn1 dt n1 0 n 1 dt n 1 n 2 dt n 2 0
n1 n 2
p() s pn1 s p n 2 s ... p 0
Y()()()()() s G s R s R s n n1 R s
q() s s qn1 s ... q 0
m()() s p s m()()() s p s n s
R() s Y()()() s Y s Y s
q()() s q s q()()() s q s d s 1 2 3
y()()()() t y t y t y t
1 2 3
transient response steady-state reponse
sites.google.com/site/ncpdhbkhn 24
The Transfer Function of Linear
Ex. 1 Systems (2)
d2 y dy dy
Given 3 2y 4(),where r t y (0) 1; (0) 0; r () t 1, t 0.Find y ()? t
dt2 dt dt
dy 1
s2 Y() s sy (0) (0) 3 sY () s y (0) 2() Y s 4() R s 4
dt s
[s2 Y () s s ]3[ sY ()1]2() s Y s 4/ s
s 3 4 KKK1 2 KK3 4 5
Y() s
s23 s 2 s ( s 2 3 s 2) s1 s 2 s s 1 s 2
2 1 2 4 2
s1 s 2 s s 1 s 2
y( t ) (2 et e 2 t ) (2 e 2 t 4 e t ) 2
e2t 2 e t 2
sites.google.com/site/ncpdhbkhn 25
The Transfer Function of Linear
Ex. 2 Systems (3)
Find the transfer function? R R
1 2 i2
vi
ii
–
+ vo
ii i2
vi v v i v v i 0 v i
ii
RRRR1 1 1 1
vo v v o v v o 0 v o
i2
RRRR2 2 2 2
v v v R
i o o 2
RR1 2 vi R1
sites.google.com/site/ncpdhbkhn 26
The Transfer Function of Linear
Ex. 3 Systems (4)
Find the transfer function?
k
dv
M1 ()() b b v b v r t Friction b2
1dt 1 2 1 1 2
Velocity v2(t)
t M2
dv2
M2 b 1 v 2 b 1 v 1 k v 2 dt 0
0
dt Friction b1
MsVs()()()()() b bVs bVs Rs
1 1 1 2 1 1 2 M Velocity v (t)
V() s 1 1
MsVs( ) bVs ( ) bVs ( ) k 2 0
2 2 1 2 1 1 s Force r(t)
(/)()M2 s b 1 k s R s
V1() s 2
(M1 s b 1 b 2 )( M 2 s b 1 k / s ) b 1
2
V1() s M 2 s b 1 s k
Gv () s 2 2
R() s (M1s b 1 b 2 )( M 2 s b 1 s k ) b 1 s
2
X1()()/ s V 1 s sGv () s M 2 s b 1 s k
Gx () s 2 2
R()() s R s s sM[(1s bbMs 1 2 )( 2 bsk 1 ) bs 1 ]
sites.google.com/site/ncpdhbkhn 27
The Transfer Function of Linear
Ex. 4 Systems (5)
Find the transfer function?
Angle θ
Kf i f
Tm K1 i a () t Inertia
load
K1 Kf i f()() t i a t
magnet-dc-motor-or-pmdc-motor/
()()()K1 Kf I a i f t K m i f t
Tm()() s K m I f s TL()()() s T d s T L s
2
TL ()()() s Js s bs s
Vf()()() s R f sL f I f s
()s K
G() s m
Vf( s ) s ( Js b )( L f s R f )
K/( JL )
m f
s( s b / J )( s Rf / L f )
sites.google.com/site/ncpdhbkhn 28
The Transfer Function of Linear
Ex. 4 Systems (8)
Find the transfer function?
Tm()()() s K1 K f I f s I a s
If the armature current Ia is constant
()s K
G() s m
Vf( s ) s ( Js b )( L f s R f )
K/( JL ) K/( bR )
m f m f
s( s b / J )( s Rf / L f ) s(f s 1)( L s 1)
Td () s
()
Vf () s 1 If () s Tm () s 1 ()s 1 ()s
Km
Rf L s s Js b s
TL () s
Field Load
Field – controlled DC motor
sites.google.com/site/ncpdhbkhn 29
The Transfer Function of Linear
Ex. 4 Systems (9)
Find the transfer function?
Tm()()() s K1 K f I f s I a s
If the field current If is constant
Tm()()()() s K1 K f I f I a s K m I a s
Va()()()() s R a sL a I a s V b s
Va()() s V b s
Ia () s
Ra sL a
Vb()() s K b s
2
TL ()()() s Js s bs s
()s K
G() s m
Vsa( ) sJsbLsR [( )( a a ) KK b m ]
Armature – controlled DC motor
sites.google.com/site/ncpdhbkhn 30
The Transfer Function of Linear
Ex. 4 Systems (10)
Find the transfer function?
Tm()()() s K1 K f I f s I a s
Tm()() s K m I a s
If the field current If is constant
V()() s K s
Va()() s V b s b b
Ia () s 2
Ra sL a TL ()()() s Js s bs s
()s K
G() s m
Vsa( ) sJsbLsR [( )( a a ) KK b m ]
Td () s
T() s ()
Va () s Km m 1 ()s 1 ()s
R L s Js b s
() a a TL () s
Armature Load
K
Back electromotive force b
Armature – controlled DC motor
sites.google.com/site/ncpdhbkhn 31
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 32
Block Diagram Models (1)
V() s K ()s ()s K
f G() s m G() s m
s( Js b )( Lf s R f ) Vf( s ) s ( Js b )( L f s R f )
R1() s Y1() s Y1()()()()() s G 11 s R 1 s G 12 s R 2 s
System
R2 () s Y2 () s Y2()()()()() s G 21 s R 1 s G 22 s R 2 s
R1() s Y1() s
R2 () s System Y2 () s
RJ () s YI () s
Y1() s G11()()()() s G 12 s G 1J s R 1 s
Y() s G()()()() s G s G s R s
2 21 22 2J 2 Y GR
YI () s GI1()()()() s G I 2 s G IJ s R J s
sites.google.com/site/ncpdhbkhn 33
Block Diagram Models (2)
R1() s Y1() s Y1()()()()() s G 11 s R 1 s G 12 s R 2 s
System
R2 () s Y2 () s Y2()()()()() s G 21 s R 1 s G 22 s R 2 s
R() s Y() s
1 G11(s) 1
R() s
2 G22(s) Y2 () s
sites.google.com/site/ncpdhbkhn 34
Block Diagram Models (3)
X1 X2 X3 X1 X3
G1(s) G2(s) G1G2
or
X1 X3
G2G1
Combining blocks in cascade
Moving a summing point behind a block
X1 X3 X1 X3
G G
() () X2
X2 G
sites.google.com/site/ncpdhbkhn 35
Block Diagram Models (4)
X1 X2 X1 X2
G G
G
X2 X2
Moving a pickoff point ahead of a block
Moving a pickoff point behind a block
X1 X2 X1 X2
G G
X X
1 2 1/G
sites.google.com/site/ncpdhbkhn 36
Block Diagram Models (5)
X1 X3 X1 X3
G G
() ()
X2 1/G
X2
Moving a summing point ahead of a block
Eliminating a feedback loop
X X
1 2 X G X 2
G 1
() 1 GH
H
sites.google.com/site/ncpdhbkhn 37
Block Diagram Models (6)
R(s) Ea(s) Controller Z(s) Actuator U(s) Process Y(s)
(–) Gc(s) Ga(s) G(s)
Sensor
B(s) H(s)
Esa ()()()()()() Rs Bs Rs HsYs
Y()()() s G s U s G()()() s Ga s Z s G()()()() s Ga s G c s E a s
Ys() GsGsGsRs ()a () c ()[() HsYs ()()]
Y() s G()()() s G s G s
a c
R()1 s G () s Ga () s G c ()() s H s
sites.google.com/site/ncpdhbkhn 38
Block Diagram Models (7)
Ex.
H2
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
X1 X2 X1 X2
G G
X1 X
2 1/G
Moving a pickoff point behind a block
H2/G4
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
sites.google.com/site/ncpdhbkhn 39
Block Diagram Models (8)
Ex.
H2/G4
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
X1 X2 X3 X1 X3
G1(s) G2(s) G1G2
Combining blocks in cascade
H2/G4
R(s) () Y(s)
G1 G2 G3G4
()
H1
H3
sites.google.com/site/ncpdhbkhn 40
Block Diagram Models (9)
Ex.
H2/G4
R(s) () Y(s)
G1 G2 G3G4
()
H1
H3
X X X G X 2
1 G 2 1
() 1 GH
H
Eliminating a feedback loop
H2/G4
()
R(s) GG3 4 Y(s)
G1 G2
() 1 GGH3 4 1
H3
sites.google.com/site/ncpdhbkhn 41
Block Diagram Models (10)
Ex.
H2/G4
()
R(s) GG3 4 Y(s)
G1 G2
() 1 GGH3 4 1
H3
H2/G4
()
R(s) GGG2 3 4 Y(s)
G1
() 1 GGH3 4 1
H3
R(s) GGG2 3 4 Y(s)
G1
() 1GGHGGH3 4 1 2 3 2
H3
sites.google.com/site/ncpdhbkhn 42
Block Diagram Models (11)
Ex.
H2
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
R(s) GGG2 3 4 Y(s)
G1
() 1GGHGGH3 4 1 2 3 2
H3
Y() s GGGG
1 2 3 4
Rs( ) 1 GGH341 GGH 232 GGGGH 12343
sites.google.com/site/ncpdhbkhn 43
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 44
Signal – Flow Graph Models (1)
R(s) Y(s)
G(s) Y()()() s G s R s R(s) Y(s)
R() s Y() s
1 1 G11() s
G11(s) R1(s) Y1(s)
G12 () s
G21() s
R2 () s Y() s
2 R (s) Y (s)
G (s) 2 2
22 G22 () s
Y1()()()()() s G 11 s R 1 s G 12 s R 2 s
Y2()()()()() s G 21 s R 1 s G 22 s R 2 s
sites.google.com/site/ncpdhbkhn 45
Signal Flow Graph Models (2)
– a11
1
a11 x 1 a 12 x 2 r 1 x 1 R X
1 1
a21 x 1 a 22 x 2 r 2 x 2
a21 a12
(1a ) x a x r
11 1 12 2 1
R X
a21 x 1 (1 a 22 ) x 2 r 2 2 2
1
a22
(1a22 ) r 1 a 12 r 2 1 a 22 a 12
x1 r 1 r 2
(1a11 )(1 a 22 ) a 12 a 21
(1a11 ) r 2 a 21 r 1 1 a 11 a 21
x2 r 2 r 1
(1a11 )(1 a 22 ) a 12 a 21
(1 a11 )(1 a 22 ) a 1221 a 1 a 11 a 22 a 1122 a a 1221 a
N
1 LLLLLLn n m n m p ...
n1 n , m n , m , p
nontouching nontouching
sites.google.com/site/ncpdhbkhn 46
Signal – Flow Graph Models (3)
N
1 LLLLLLn n m n m p ...
n1 n , m n , m , p
nontouching nontouching
= 1 – (sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops)
– (sum of the gain products of all combinations of three nontouching loops)
+ ...
a11
1 L1
R1 X1
L a;; L a a L a
1 11 2 1221 3 22 a21 L2 a12
(sum of all different loop gains) R2 X 2
= L + L + L = a + a a + a 1 L3
1 2 3 11 12 21 22 a22
(sum of the gain products of all combinations of two nontouching loops)
= L1L3 = a11a22
1 (a11 a 22 a 1221 a ) a 1122 a
sites.google.com/site/ncpdhbkhn 47
Signal – Flow Graph Models (4)
N
1 LLLLLLn n m n m p ...
n1 n , m n , m , p
nontouching nontouching
Y() s Pk k
G() s k
R() s
• Pk: gain of kth path from input to output
• Δk (cofactor): the determinant Δ with the loop(s)
touching the kth path removed.
sites.google.com/site/ncpdhbkhn 48
Signal – Flow Graph Models (5)
Ex. 1 H2 H3
P
Y() s k k k
G() s L L
R() s 1 2
G
1 G4
G2 G3
• Pk: gain of kth path from input
to output R() s Y() s
• Δ (cofactor): the determinant G G
k G 6 7 G8
Δ with the loop(s) touching the 5
kth path removed. L3 L4
PGGGGPGGGG1 1 2 3 4; 2 5 6 7 8
H6 H7
Δ = 1 – (sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops)
– (sum of the gain products of all combinations of three nontouching loops) + ...
LGHLGHLGHLGH1 222;;; 333 664 77
1 (LLLLLLLLLLLL1 2 3 4 ) ( 1314 23 24 )
sites.google.com/site/ncpdhbkhn 49
Signal – Flow Graph Models (6)
Ex. 1 H2 H3
P
Y() s k k k
G() s L L
R() s 1 2
G
1 G4
PGGGG1 1 2 3 4 G2 G3
PGGGG2 5 6 7 8 R() s Y() s
1 (LLLL ) G6 G7 G
1 2 3 4 G5 8
()LLLLLLLL1 3 1 4 2 3 2 4
L3 L4
Δk (cofactor): the determinant Δ with the
loop(s) touching the kth path removed.
H6 H7
1 1 (LL 3 4 )
LL1 2 0
2 1 (LL 1 2 )
LL3 4 0
PP GGGGLLGGGGLL[1 ( )] [1 ( )]
G() s 1 1 2 2 1234 34 5678 12
1 (LLLLLLLLLLLL1 2 3 4 ) ( 1314 23 24 )
sites.google.com/site/ncpdhbkhn 50
Signal – Flow Graph Models (7)
T() s
Ex. 2 d
T() s ()
Va () s Km m 1 ()s 1 ()s
()s Pk k
G() s k R L s Js b s
V() s () a a TL () s
a Armature Load
Δ = 1 – (sum of all different loop gains)
K
+ (sum of the gain products of all Back electromotive force b
combinations of two nontouching loops) ()s K
– (sum of the gain products of all G() s m
combinations of three nontouching loops) + ...
Vsa( ) sJsbLsR [( )( a a ) KK b m ]
LGGH 1 2
Td () s
1
Va () s Tm () s TL () s ()s
1 LGGH 1 1 2 1 G1 1 1 G2 G3
• P : gain of kth path from input to output
k L
• Δk (cofactor): the determinant Δ with the
loop(s) touching the kth path removed. H
Km 1 1
PGGG1 1 2 3 GGGHK1;;; 2 3 b
Ra L a s Js b s
1
1 L0 K 1 1
m
()s P G G G1 R L s Js b s
G() s 1 1 1 2 3 a a
Va ( s ) 1 G1 G 2 H Km 1
1 Kb
Ra L a s Js b
sites.google.com/site/ncpdhbkhn 51
Signal – Flow Graph Models (8)
Ex. 3
H2
P R(s) () Y(s)
Y() s k k k
G() s G1 G2 G3 G4
R() s ()
H
Δ = 1 – (sum of all different loop gains) 1
+ (sum of the gain products of all H
combinations of two nontouching loops) 3
– (sum of the gain products of all Y() s GGGG
combinations of three nontouching loops) + ... 1 2 3 4
Rs( ) 1 GGH341 GGH 232 GGGGH 12343
LGGH1 2 3 2 LGGH2 3 4 1 LGGGGH3 1 2 3 4 3 1 LLL1 2 3
• Pk: gain of kth path from input to output
• Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
PGGGG1 1 2 3 4
1 1
LLL1, 2 , 3 0
Y() s P GGGG 1 GGGG
G() s 1 1 1 2 3 4 1 2 3 4
R( s ) 1 L1 L 2 L 3 1GGHGGHGGGGH341 232 12343
sites.google.com/site/ncpdhbkhn 52
Signal – Flow Graph Models (9)
G7
Ex. 4 G8
P
()s k k k G G
G() s 1 G1 2 G4 G5 6
Va () s R() s Y() s
G3
Δ = 1 – (sum of all different loop gains) H4
+ (sum of the gain products of all H1
combinations of two nontouching loops) H2
– (sum of the gain products of all
combinations of three nontouching loops) + ... H3
LGGGGH1 2 3 4 5 2; LGGH2 5 6 1; LGH3 8 1; LGGH4 2 7 2;
LGH5 4 4; LGGGGGGH6 1 2 3 4 5 6 3; LGGGGH7 1 2 6 7 3; LGGGGGH8 1 2 3 4 8 3;
1 (LLLLLLLLLLLLLL12345678 ) ( 575434 )
• Pk: gain of kth path from input to output
• Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
PGGGGGG1 1 2 3 4 5 6; PGGGG2 1 2 7 6; PGGGGG3 1 2 3 4 8;
1 3 1 2 1 L 5
all loops are zero all loops except L5 are zero
Y() s PPP GGGGGGGGGGLGGGGG1 (1 ) 1
G() s 1 1 2 2 3 3 123456 1276 5 12348
R() s 1LLLLLLLLLLLLLL12345678575434
sites.google.com/site/ncpdhbkhn 53
Mathematical Models of Systems
1. Differential Equations of Physical Systems
2. Linear Approximations of Physical Systems
3. The Laplace Transform
4. The Transfer Function of Linear Systems
5. Block Diagram Models
6. Signal – Flow Graph Models
7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn 54
The Simulation of Systems Using
Control Design Software (1)
Ex. 1
Wall friction
b k
Mass
d2 y()() t dy t y
M b ky()() t r t M
dt2 dt
Force
y(0) r(t)
nt 2
y( t ) e sinn 1 t
2
1
k b
; ; cos1
n M 2 kM
sites.google.com/site/ncpdhbkhn 55
The Simulation of Systems Using
Control Design Software (2)
Ex. 2
4s 76
Y() s
s2 6 s 265
• zplane
• roots
• poly
• conv
• polyval
• tf
• series
• parallel
• feedback
sites.google.com/site/ncpdhbkhn 56
The Simulation of Systems Using
Control Design Software (3)
Ex. 3
H2
1 ()
G1() s R(s) Y(s)
s 5 G1 G2 G3 G4
1 ()
G() s H1
2 s 1
H3
2s2 7
G() s
3 s2 4 s 4
s 1
G() s
4 s 6
s 1
H() s
1 s 2
H2 ( s ) 3
H3( s ) 1
sites.google.com/site/ncpdhbkhn 57
The Simulation of Systems Using
Control Design Software (4)
Ex. 3
H2
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
X1 X2 X1 X2
G G
X1 X
2 1/G
Moving a pickoff point behind a block
H2/G4
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
sites.google.com/site/ncpdhbkhn 58
The Simulation of Systems Using
Control Design Software (5)
Ex. 3
H2/G4
R(s) () Y(s)
G1 G2 G3 G4
()
H1
H3
X1 X2 X3 X1 X3
G1(s) G2(s) G1G2
Combining blocks in cascade
H2/G4
R(s) () Y(s)
G1 G2 G3G4
()
H1
sites.google.com/site/ncpdhbkhn H3 59
The Simulation of Systems Using
Control Design Software (6)
Ex. 3
H2/G4
R(s) () Y(s)
G1 G2 G3G4
()
H1
H3
X X X G X 2
1 G 2 1
() 1 GH
H
Eliminating a feedback loop
H2/G4
()
R(s) GG3 4 Y(s)
G1 G2
() 1 GGH3 4 1
sites.google.com/site/ncpdhbkhn H3 60
The Simulation of Systems Using
Control Design Software (7)
Ex. 3
H2/G4
()
R(s) GG3 4 Y(s)
G1 G2
() 1 GGH3 4 1
H3
H2/G4
()
R(s) GGG2 3 4 Y(s)
G1
() 1 GGH3 4 1
H3
R(s) GGG2 3 4 Y(s)
G1
() 1GGHGGH3 4 1 2 3 2
sites.google.com/site/ncpdhbkhn H3 61
The Simulation of Systems Using
Control Design Software (8)
Ex. 4
G1() s Td () s G2 () s
G3() s
()s 10 () 1 ()s
d 500
() () s 1 2s 0.5
0.1
sites.google.com/site/ncpdhbkhn 62
Các file đính kèm theo tài liệu này:
- bai_giang_control_system_design_chapter_ii_mathematical_mode.pdf