Lecture07_handout_6822_2045418_20180726_100308

Không gian con Không gian nghiệm của hệ phương trình tuyến tính thuần nhất we = {x E Rn : Ax = ớ}, vói A = (aỊị)mxn và X = (xi,x2, •••.xn)T 9 We là không gian con của Rn (tại sao?) 9 Số chiều của We = n — rank(A) 9 Mỗi hệ gồm k = dim(We) vécto nghiệm độc lập tuyến tính của Ax = 6 là một cơ sở của We. Ví dụ Xét 144 = {(xi, X2, X3, X4) 6 R3 : 2xi + X2 — X3 = 0, 2xi — X4 = 0, X2 - X3 + X4 = 0} ® Chứng minh We /à không gian con của R4 9 Tìm số chiều và một cơ sở của We

pdf18 trang | Chia sẻ: thucuc2301 | Ngày: 27/11/2020 | Lượt xem: 10 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Lecture07_handout_6822_2045418_20180726_100308, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên

Các file đính kèm theo tài liệu này:

  • pdflecture07_handout_6822_2045418.pdf